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Abstract

Space weather, driven by solar phenomena such as sunspots, solar flares,
and coronal mass ejections (CMEs), has profound effects on Earth’s technological
systems. Geomagnetic storms triggered by these events can disrupt power grids,
aviation, satellite communications, and navigation systems posing risks to sustainable
infrastructure and economic stability. Traditional physics-based forecasting methods,
though powerful, are often constrained by computational intensity, incomplete
datasets, and limited predictive skill during highly dynamic solar maximum phases.
This study explores how artificial intelligence (Al) can complement physics-informed
models to enhance space weather forecasting, with particular emphasis on the Polar
Cap (Pi) Index as a proxy for geomagnetic disturbances. By integrating sunspot
numbers, CME parameters, and interplanetary magnetic field (IMF Bz) data into
machine learning models, improved correlations and real-time predictions can be
achieved. We argue that hybrid Al—physics approaches can significantly reduce
forecast lag, capture nonlinear effects, and provide reliable early-warning systems.
Such advancements contribute to India’s Viksit Bharat@Z2047 vision by safeguarding
critical infrastructure, promoting sustainable economic growth, and reinforcing
resilience in the face of global space weather challenges.

Keywords: Space Weather Forecasting, Coronal Mass Ejections (CMEs), Polar
Cap (Pi) Index, Physics-Informed Artificial Intelligence, Digital
Sustainability.
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Introduction

India’s ambition under Viksit Bharat@2047 emphasizes technological
innovation, sustainability, and resilience. Space weather is a critical but often
overlooked factor in this mission. Solar activity manifested in sunspot cycles, CMEs,
and solar wind variations directly influences geomagnetic activity on Earth (Hathaway,
2015). Disturbances measured by indices such as the Polar Cap (Pi) Index threaten
energy systems, communications, and global business operations. While physics-
based models have advanced our understanding, their predictive capacity remains
limited. It promotes digital sustainability through efficient data integration, reducing the
need for resource-heavy simulations, and ensures resilience in critical infrastructures
and empowers India to lead globally in sustainable digital innovation (Schrijver 2015).
Space weather originates from solar surface phenomena. Sunspots, concentrated
magnetic regions, are precursors to flares and CMEs (Richardsen &Cane, 2010).
When CMEs carrying dense plasma and embedded magnetic fields interact with
Earth’s magnetosphere, they induce geomagnetic storms. The severity of such events
depends strongly on the southward component of the interplanetary magnetic field
(IMF Bz). Geomagnetic indices, particularly the Pi Index, quantify polar disturbances
and serve as critical indicators of geomagnetic activity. Understanding these physics-
based drivers (Karniadakis et al, 2021) provides the foundation for developing
predictive Al models.

Current Forecasting Approaches in Physics-Based Space Weather Models

Space weather forecasting has traditionally relied on physics-based models
rooted in magnetohydrodynamics (MHD), fluid dynamics, and solar-terrestrial coupling
(Upendran et all, 2022). These models simulate the propagation of Coronal Mass
Ejections (CMEs) (Haddad, 2025 & Vijayalakshmi, 2025) and the dynamics of solar
wind plasma interacting with the Earth’s magnetosphere. Agencies like NOAA’s
Space Weather Prediction Center (SWPC), ESA’s Space Weather Service Network,
and ISRO’s Aditya-L1 mission provide valuable real-time observations that feed into
these models. However, critical limitations constrain the effectiveness of conventional
forecasting.

. High Computational Demand: Magnetohydrodynamics simulations require
supercomputers and long runtimes. This prevents rapid updates, which are
crucial for actionable early-warning systems. Forecasts may take several
hours to complete from initiation to output, creating a significant lag. For
example, real-time forecasting can be hampered due to the need to reinitialize
simulations with each new set of solar observations. This high computational
burden limits both the frequency of forecast updates and the ability to explore
multiple scenario ensembles for uncertainty quantification, making physics-
based approaches less agile in operational space weather centers.
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° Data Gaps: Accurate space weather forecasting is challenged by data gaps
and limited observations: key information from satellites can sometimes arrive
late, provide only partial coverage of the Sun or space environment, or
become unavailable due to technical issues or harsh space conditions. This
means that predictions may rely on outdated, incomplete, or missing data,
which reduces their timeliness and reliability, especially during sudden solar
events. Addressing these challenges through more real-time data, expanded
monitoring from multiple locations, and better use of emerging technologies
and collaborations is essential to protect technology and infrastructure, making
forecasting more sustainable and beneficial for society as we become
increasingly reliant on space-dependent systems.

Uncertainty in Prediction

One of the enduring challenges in space weather forecasting lies in the
uncertainty of prediction. CME arrival times can deviate by 12—24 hours, and their geo
effectiveness is strongly dependent on the southward component of the interplanetary
magnetic field (IMF Bz), a parameter that remains difficult to model using solar-based
observations alone (Richardson & Cane, 2010). From the perspective of Viksit
Bharat@2047, such limitations pose significant challenges to the development of
resilient, technology-driven infrastructure. India’s increasing reliance on satellites for
telecommunications, navigation, and disaster management, alongside its vision of
integrating renewable energy into smart grids, underscores the urgent need for
forecasting frameworks that are fast (real-time or near real-time), accurate (capable of
capturing nonlinear solar—terrestrial interactions), and sustainable (computationally
efficient and highly reliable). While physics-based approaches remain indispensable
for understanding causal mechanisms (Pulkkinen, 2007), they must be complemented
and strengthened by Al-driven predictive models that can exploit complex solar wind—
magnetosphere coupling (Borovsky & Denton, 2006) and leverage advanced methods
such as deep learning and transformers to achieve operational skill. This integration is
crucial for meeting the demands of a digitally empowered and resilient India. Thus,
while physics-based approaches remain essential for understanding causal
mechanisms, they must be augmented with Al-driven predictive models to meet the
demands of a digitally empowered and resilient India.

Al and Machine Learning in Weather Forecasting

Artificial Intelligence (Al) is emerging as a transformative force in space
weather forecasting, offering tools that can learn directly from large, noisy, and
nonlinear datasets. Instead of solving complex differential equations, Al leverages
patterns in observational data to make predictions. Several Al methods have been
explored in solar-terrestrial physics:
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Time Series Prediction Models: Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) networks are specialized forms of recurrent
neural networks that are well-suited for handling sequential data, as they can
effectively model both long-range and short-range temporal dependencies.
These models have shown significant success in forecasting solar and
geomagnetic activity indices such as sunspot number, Kp, and Dst indices by
learning complex nonlinear temporal patterns. For India, where space weather
impacts satellite-based services and polar navigation, LSTM and GRU models
can provide reliable forecasts of the Pi index several hours to days ahead,
enhancing operational safety and planning.

Image Recognition Models: Convolutional Neural Networks (CNNs): It can
classify solar images (from SOHO, SDO, or Aditya-L1) to detect emerging
active regions and flare precursors (Gopalswamy, 2009). This capability can
strengthen early-warning systems for aviation and satellite operators in India’s
fast-expanding civil aviation sector.

Classification and Regression Models: Algorithms like Random Forests,
Support Vector Machines (SVM), and XGBoost have been widely applied for
predictive modelling and classification tasks across various domains. have
been applied to space weather data to predict the geo effectiveness of Coronal
Mass Ejections (CMEs) based on parameters like their speed, angular width,
and solar source location. These models help distinguish between high-impact
and low-impact solar events, enabling proactive mitigation strategies for
vulnerable infrastructures such as India’s power grids.

These machine learning techniques are increasingly essential to modern

weather forecasting systems, complementing traditional physics-based models with
faster, data-driven insight and supporting enhanced decision-making.

Hybrid Physics—Al Models: Physics provides the causal framework
necessary to understand the chain of solar—terrestrial interactions, while Al
contributes the ability to recognize complex, nonlinear patterns in large
datasets. By embedding physics-informed constraints into Al architectures,
forecasts can become not only more accurate but also more interpretable,
bridging the gap between theoretical understanding and operational needs. In
the context of Viksit Bharat@Z2047, such hybrid models hold the potential to
ensure India’s self-reliance in space weather forecasting, thereby reducing
dependence on foreign prediction centres. Most significantly, physics-informed
Al approaches integrate observational data with theoretical principles,
balancing predictive accuracy with interpretability (Camporeale, 2019). These
hybrid methods also reduce computational delays and enhance performance
in nonlinear regimes, offering a sustainable pathway toward robust, real-time
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space weather forecasting systems. Physics provides causal understanding,
while Al offers pattern recognition. Embedding physics-informed constraints
into Al models makes predictions both accurate and interpretable. For Viksit
Bharat@2047, such hybrid approaches can support self-reliance in space
weather forecasting and reduce dependence on foreign centres.

Context for Viksit Bharat
° India’s power grid expansion and renewable energy adoption make grid

stability highly vulnerable to geomagnetic storms. Al-driven forecasts could
protect millions from blackouts.

. With the rise of Digital India, uninterrupted GPS, telecom, and internet
connectivity will be indispensable; Al-enabled early warnings safeguard this.

. Aditya-L1 mission data can be combined with Al for indigenous forecasting
tools, empowering India’s leadership in the global space weather community
by 2047.

The application of Al in space weather is not merely a scientific advancement
but also a strategic driver of India’s sustainable growth, technological self-reliance,
and resilience. More recent work has shifted towards Al and machine learning
approaches to improve predictive accuracy. Camporeale (2019) reviewed the
challenges of applying machine learning to space weather, noting its potential to
capture nonlinear dependencies not accessible to traditional statistical or physics-only
models. Gruet et al. (2018) employed Recurrent Neural Networks (RNNs) to forecast
the DST index from solar wind parameters, showing significant improvements over
baseline autoregressive methods.

Other studies have focused on event-specific predictions. In (Bobra &
Couvidat, 2015) used Support Vector Machines (SVMs) is used to classify solar active
regions by flare productivity based on SDO/HMI magnetogram data, applied deep
learning models for CME arrival time forecasts. These methods underscore the
versatility of Al techniques across different facets of space weather forecasting, from
flare prediction to geomagnetic storm severity. Collectively, this literature suggests
that while sunspot numbers and CME counts remain useful proxies of solar activity,
Al-enhanced models that incorporate solar wind and IMF parameters offer the best
pathway forward. Such models can improve short- and medium-term forecasts of
geomagnetic indices like the Pi Index, contributing directly to the themes of Al for a
Better Tomorrow, Digital Sustainability, and Al for People and Planet.

Data and Methods

To evaluate the potential of artificial intelligence (Al) for Pi Index forecasting,
we integrated solar, interplanetary, and geomagnetic datasets, which were pre-
processed into synchronized time-series before model training. Monthly Sunspot
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Numbers (SSN) were obtained from SILSO (Royal Observatory of Belgium) as a
measure of solar magnetic variability. Coronal Mass Ejection (CME) parameters
(speed, width, onset time) were taken from the SOHO/LASCO catalogue (CDAW Data
Centre) and aggregated monthly to capture eruptive event statistics. Near-Earth solar
wind and IMF data were sourced from NASA OMNI-Web (1-hour resolution
propagated to Earth). Parameters included IMF Bz, solar wind speed (V), and proton
density (Np), later averaged to 3-hour cadence to align with geomagnetic indices.

Modelling Approaches

. Baseline Physics—Statistical Benchmark: To provide a reference, simple
correlations were first computed. Pearson coefficients quantified linear
associations between SSN and Pi Index, while Spearman’s rank captured
nonlinear monotonic trends. This step established the explanatory power of
traditional indicators.

o Al Models: LSTM Recurrent Neural Network. The LSTM model was trained
on multivariate time series inputs, including SSN, CME statistics, solar wind
speed, IMF Bz, and density. Data were normalized and segmented into 60-
month sliding windows to capture both short-term variability and long-term
solar cycle patterns. The LSTM architecture, with memory cells and gating
mechanisms, enabled the model to retain long-range dependencies.
Supervised learning was used to map input sequences to next-step Pi index
predictions.

o Random Forest Regression: The Random Forest model utilized event-based
CME and solar wind parameters as inputs. As an ensemble of decision trees,
it effectively captured nonlinear interactions among drivers while providing
feature importance estimates, enhancing interpretability of the results.

. Validation: Both models were benchmarked against observed Pi Index values
using coefficient of determination (R?) and root mean square error (RMSE),
providing a quantitative comparison of statistical versus Al approaches.

Geomagnetic Response (Pi Index)

The Pi Index values, used as a proxy for polar cap geomagnetic disturbance,
were derived from high-latitude magnetometer networks. Hourly Pi index values were
averaged to 3-hour resolution, consistent with the Kp-index format, thereby ensuring
comparability across modelling approaches. The Pi Index captures enhancements
associated with both CME-driven storms and HSS-related recurrent activity.

Case Study: Pi Index Forecasting with Al

The Polar Cap (Pi) Index is a widely used geomagnetic indicator that reflects
high-latitude disturbances in Earth’s magnetosphere. It is particularly valuable as it
responds rapidly to interplanetary magnetic field (IMF) fluctuations, especially
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southward Bz, and solar wind speed. Since India’s infrastructure expansion includes
aviation (polar routes), satellite navigation, and renewable energy grids, reliable Pi
Index forecasting is of national importance for Viksit Bharat@Z2047. Accurate
prediction of the Pi Index is therefore an essential element in building a more resilient
and sustainable digital society.

Forecasts:
- Pi Index Prediction
- Short (3-6 hrs)
- Medium (1-2 days)
Inputs: Al Models:
- Sunspot Numbers - Linear Regression
- CME Catalogs - Random Forest
- Solar Wind (Bz, V, N) - LSTM Network

Applications:
- Grid Protection
- Aviation Safety
- Satellite Operations

Figure 1: Al-Enhanced Pi Index Forecasting for Space Weather Applications
Geomagnetic Response (Pi Index)

The Pi Index values, used as a proxy for polar cap geomagnetic disturbance,
were derived from high-latitude magnetometer networks. Hourly Pi index values were
averaged to 3-hour resolution, consistent with the Kp-index format, thereby ensuring
comparability across modelling approaches. The Pi Index captures enhancements
associated with both CME-driven storms and HSS-related recurrent activity.

Results

Model performance comparison for pi index forecasting using linear
regression, random forest and LSTM is shown in Table 1. The bar chart in Figure 2
shows R? score (blue bar chart) and RMSE (green, right axis). The LSTM
demonstrates best performance with the highest R? and lowest RMSE, indicating
superior predictive capability. The correlation analysis indicates that the Pearson
correlation between SSN and the Pi Index was 0.42, indicating a moderate
relationship. However, when SSN was combined with CME speed and IMF Bz, the
correlation improved significantly to 0.71.

As shown in Figure 2 Linear Regression exhibited limited predictive power (low
R2, high RMSE), while Random Forest achieved moderate improvements. The LSTM
network outperformed both, attaining the highest R? and lowest RMSE, underscoring
its effectiveness in capturing nonlinear temporal dependencies for Pi Index
forecasting.
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Table 1: Al Forecasting Performance

Model Input Variables R? RMSE (Pi Notes
Score | Index units)
Baseline Linear | SSN only 0.18 4.2 Weak explanatory
Regression power
Random Forest | SSN, CME 0.68 2.1 Good at event
Regression speed, Bz, V classification
LSTM Neural SSN, CME 0.79 1.6 Captures nonlinear &
Network count, CME temporal patterns
speed, Bz, V
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Figure 2: Model Performance for Pi Index Forecasting
Discussion

The results illustrate that sunspot number alone is insufficient for reliable
forecasting of geomagnetic disturbances. This aligns with earlier studies
(Gopalswamy et al., 2009; Verbanac et al., 2011), which showed that non—sunspot
related CMEs, particularly from high-latitude filament eruptions, weaken the SSN-—
CME correlation during solar maximum. By integrating CME physical parameters and
interplanetary conditions into Al models, predictive accuracy improved substantially.
The LSTM network outperformed Random Forest by better capturing temporal
dependencies and the nonlinear coupling between solar drivers and geomagnetic
response.
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For India, this has strong practical implications:

. Al for a Better Tomorrow: By improving early-warning systems for
geomagnetic storms, Al contributes to safeguarding society’s digital
infrastructure.

o Digital Sustainability: Reliable forecasts protect satellites, communication

systems, and energy grids—cornerstones of a sustainable digital economy.

. Al for People and Planet: Forecasting geomagnetic disturbances supports
public safety (aviation, navigation) and ensures continuity of services that
people depend on daily.

° Aviation & Navigation: Forecasting Pi Index spikes ensures safe rerouting of
polar flights.
. Power Grids: Improved warnings for geomagnetically induced currents (GICs)

help prevent blackouts.

. Satellite Safety: Al-enhanced predictions can guide satellite operators to
temporarily shut down vulnerable systems during geomagnetic storms.

Al-driven space weather forecasting safeguards critical infrastructure—power
grids, satellite constellations, and renewable energy systems—thereby ensuring
business continuity and economic stability. For India, reliable forecasting enhances
aviation safety, supports digital connectivity, and protects energy transitions. Globally,
Al-based systems foster resilience and sustainable development. By integrating
physics and Al, India can position itself as a leader in space weather resilience,
aligning with Viksit Bharat@2047.
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o Sunspot Numbers Al Models Forecasts:
« CME Catalogs « Linear Regression « Pi Index Prediction
« Solar Wind (Bz, V, N) « Random Forest - Short (3-6 brs)
o LSTM Network - Medium (1-2 days

Applications:
« Grid Protection

= Aviation Safety
« Satellite Operation

Figure 3: Al-enhanced Pi Index forecasting framework linking solar inputs and
Al models to forecasts and applications, supporting Viksit Bharat 2047
sustainability goals
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As highlighted in Table 2, traditional linear regression models explain less than
20% of the observed variance, offering only weak predictive power and limited utility
for practical early-warning systems. By integrating CME physical parameters and
interplanetary drivers like IMF Bz into Al models, predictive accuracy improves
dramatically. Random Forest regression and LSTM neural networks both show
substantial gains, with LSTM performance reaching an R? of 0.79 and much lower
RMSE, capturing nonlinear and temporal patterns in geomagnetic activity essential for
operational forecasting.

Figure 3 depicts the Al-enhanced Pi Index forecasting framework, which brings
together diverse solar and interplanetary datasets into a unified, machine learning-
driven operational pipeline. This holistic approach not only improves forecast
timeliness and reliability but also supports critical infrastructure resilience—for
example, timely protections for power grids, aircraft navigation, and satellite systems.

Table 2: Comparative summary of Al-physics hybrid models for space weather
forecasting and their alignment with sustainable development goals (SDGs).

Model Key Metrics Improvement Sustainability Impact
Approach Over Baseline
Baseline R?=0.18, RMSE = Reference Limited value for early
Linear 4.2 (weak predictive | warnings, less impactful
Regression power) for infrastructure
Random R2=0.68, RMSE = +50% increase Better event
Forest 2.1 in R2, ~50% classification, supports
Regression RMSE reduction | grid protection
LSTM Neural | R2=0.79, RMSE = +75% increase Captures nonlinear
Network (Al) | 1.6 in R?, ~62% temporal patterns,
RMSE reduction | enables timely, robust
forecasts
Hybrid Expected further R*> | Enhances Reduces supercomputing
Physics- improvement (~0.8+) | interpretability energy use, improves
Informed AlI* | and latency and reliability operational resilience by
reduction (5-10x accurate, timely warnings
faster forecast) for critical infrastructure

Challenges and Future Directions

Despite significant progress, several challenges remain in advancing Al-driven
space weather forecasting. A major limitation is data sparsity and quality—solar wind
and IMF datasets often have gaps, and the Pi Index has limited long-term records
compared to indices like Dst or Kp (King & Papitashvili, 2005). Another challenge is
the explainability of Al models: deep learning architectures such as LSTMs act as
“black boxes,” making it difficult to interpret the physical basis of predictions. Next
most important challenge lies in translating technical advancements into policy
frameworks. To fully realize the benefits of Al-driven space weather forecasting,
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national agencies must establish protocols for integrating model outputs into disaster
management systems, defence readiness plans, and energy sector policies. Bridging
this science—policy gap is critical for ensuring that predictive models become tools for
governance and resilience planning in the Viksit Bharat@2047 vision.

Future work should focus on physics-informed machine learning (PIML), which
embeds magnetohydrodynamic (MHD) constraints into Al models to improve
interpretability and reliability. Expanding training sets using multi-cycle solar datasets
and integrating helio-physics data assimilation (HDA) approaches can further enhance
predictive skill. Global collaborations such as NASA’s CCMC and ESA’s Space
Situational Awareness (SSA) programs provide a blueprint for coordinated progress.
By 2047, India can play a leading role in developing a robust, sustainable, and Al-
empowered space weather forecasting framework that safeguards both digital and
physical infrastructure.

Conclusion

This study examined the links between solar activity indicators (sunspot
numbers, CME occurrence), solar wind parameters (IMF Bz velocity, density), and the
geomagnetic response represented by the Pi Index. The results show that sunspot
numbers alone provide only limited predictive capability (correlation =0.42), but
predictive power increases significantly (=0.71) when CME characteristics and IMF Bz
are incorporated, underscoring the importance of interplanetary drivers in shaping
geomagnetic activity. Within the modelling framework, artificial intelligence methods
clearly outperformed traditional statistical techniques. While linear regression based
on SSN accounted for less than 20% of the variance, Random Forest regression
achieved higher accuracy by This study examined the links between solar activity
indicators (sunspot numbers, CME occurrence), solar wind parameters (IMF Bz,
velocity, density), and the geomagnetic response represented by the Pi Index. The
results show that sunspot numbers alone provide only limited predictive capability
(correlation =0.42), but predictive power increases significantly (=0.71) when CME
characteristics and IMF Bz are incorporated, underscoring the importance of
interplanetary drivers in shaping geomagnetic activity.

These advancements highlight the transformative potential of integrating
physics-based understanding with Al-driven approaches, enabling faster, more
accurate, and interpretable space weather forecasts. Such progress is crucial for
safeguarding critical infrastructure, enhancing resilience, and promoting sustainable
technological growth in India’s Viksit Bharat@Z2047 vision. Looking forward, expanding
physics-informed machine learning models, improving data assimilation, and fostering
collaborative global research will further strengthen forecasting capabilities, ensuring
preparedness in the face of dynamic solar-terrestrial interactions and supporting
sustainable development worldwide.
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