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Abstract 

Space weather, driven by solar phenomena such as sunspots, solar flares, 

and coronal mass ejections (CMEs), has profound effects on Earth’s technological 

systems. Geomagnetic storms triggered by these events can disrupt power grids, 

aviation, satellite communications, and navigation systems posing risks to sustainable 

infrastructure and economic stability. Traditional physics-based forecasting methods, 

though powerful, are often constrained by computational intensity, incomplete 

datasets, and limited predictive skill during highly dynamic solar maximum phases. 

This study explores how artificial intelligence (AI) can complement physics-informed 

models to enhance space weather forecasting, with particular emphasis on the Polar 

Cap (Pi) Index as a proxy for geomagnetic disturbances. By integrating sunspot 

numbers, CME parameters, and interplanetary magnetic field (IMF BZ) data into 

machine learning models, improved correlations and real-time predictions can be 

achieved. We argue that hybrid AI–physics approaches can significantly reduce 

forecast lag, capture nonlinear effects, and provide reliable early-warning systems. 

Such advancements contribute to India’s Viksit Bharat@2047 vision by safeguarding 

critical infrastructure, promoting sustainable economic growth, and reinforcing 

resilience in the face of global space weather challenges. 

 

Keywords:  Space Weather Forecasting, Coronal Mass Ejections (CMEs), Polar 
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Introduction 

 India’s ambition under Viksit Bharat@2047 emphasizes technological 

innovation, sustainability, and resilience. Space weather is a critical but often 

overlooked factor in this mission. Solar activity manifested in sunspot cycles, CMEs, 

and solar wind variations directly influences geomagnetic activity on Earth (Hathaway, 

2015). Disturbances measured by indices such as the Polar Cap (Pi) Index threaten 

energy systems, communications, and global business operations. While physics-

based models have advanced our understanding, their predictive capacity remains 

limited. It promotes digital sustainability through efficient data integration, reducing the 

need for resource-heavy simulations, and ensures resilience in critical infrastructures 

and empowers India to lead globally in sustainable digital innovation (Schrijver 2015). 

Space weather originates from solar surface phenomena. Sunspots, concentrated 

magnetic regions, are precursors to flares and CMEs (Richardsen &Cane, 2010). 

When CMEs carrying dense plasma and embedded magnetic fields interact with 

Earth’s magnetosphere, they induce geomagnetic storms. The severity of such events 

depends strongly on the southward component of the interplanetary magnetic field 

(IMF BZ). Geomagnetic indices, particularly the Pi Index, quantify polar disturbances 

and serve as critical indicators of geomagnetic activity. Understanding these physics-

based drivers (Karniadakis et al, 2021) provides the foundation for developing 

predictive AI models. 

Current Forecasting Approaches in Physics-Based Space Weather Models 

 Space weather forecasting has traditionally relied on physics-based models 

rooted in magnetohydrodynamics (MHD), fluid dynamics, and solar-terrestrial coupling 

(Upendran et all, 2022). These models simulate the propagation of Coronal Mass 

Ejections (CMEs) (Haddad, 2025 & Vijayalakshmi, 2025) and the dynamics of solar 

wind plasma interacting with the Earth’s magnetosphere. Agencies like NOAA’s 

Space Weather Prediction Center (SWPC), ESA’s Space Weather Service Network, 

and ISRO’s Aditya-L1 mission provide valuable real-time observations that feed into 

these models. However, critical limitations constrain the effectiveness of conventional 

forecasting. 

• High Computational Demand: Magnetohydrodynamics simulations require 

supercomputers and long runtimes. This prevents rapid updates, which are 

crucial for actionable early-warning systems.  Forecasts may take several 

hours to complete from initiation to output, creating a significant lag. For 

example, real-time forecasting can be hampered due to the need to reinitialize 

simulations with each new set of solar observations. This high computational 

burden limits both the frequency of forecast updates and the ability to explore 

multiple scenario ensembles for uncertainty quantification, making physics-

based approaches less agile in operational space weather centers. 
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• Data Gaps: Accurate space weather forecasting is challenged by data gaps 

and limited observations: key information from satellites can sometimes arrive 

late, provide only partial coverage of the Sun or space environment, or 

become unavailable due to technical issues or harsh space conditions. This 

means that predictions may rely on outdated, incomplete, or missing data, 

which reduces their timeliness and reliability, especially during sudden solar 

events. Addressing these challenges through more real-time data, expanded 

monitoring from multiple locations, and better use of emerging technologies 

and collaborations is essential to protect technology and infrastructure, making 

forecasting more sustainable and beneficial for society as we become 

increasingly reliant on space-dependent systems. 

Uncertainty in Prediction 

 One of the enduring challenges in space weather forecasting lies in the 

uncertainty of prediction. CME arrival times can deviate by 12–24 hours, and their geo 

effectiveness is strongly dependent on the southward component of the interplanetary 

magnetic field (IMF Bz), a parameter that remains difficult to model using solar-based 

observations alone (Richardson & Cane, 2010). From the perspective of Viksit 

Bharat@2047, such limitations pose significant challenges to the development of 

resilient, technology-driven infrastructure. India’s increasing reliance on satellites for 

telecommunications, navigation, and disaster management, alongside its vision of 

integrating renewable energy into smart grids, underscores the urgent need for 

forecasting frameworks that are fast (real-time or near real-time), accurate (capable of 

capturing nonlinear solar–terrestrial interactions), and sustainable (computationally 

efficient and highly reliable). While physics-based approaches remain indispensable 

for understanding causal mechanisms (Pulkkinen, 2007), they must be complemented 

and strengthened by AI-driven predictive models that can exploit complex solar wind–

magnetosphere coupling (Borovsky & Denton, 2006) and leverage advanced methods 

such as deep learning and transformers to achieve operational skill. This integration is 

crucial for meeting the demands of a digitally empowered and resilient India. Thus, 

while physics-based approaches remain essential for understanding causal 

mechanisms, they must be augmented with AI-driven predictive models to meet the 

demands of a digitally empowered and resilient India.  

AI and Machine Learning in Weather Forecasting  

 Artificial Intelligence (AI) is emerging as a transformative force in space 

weather forecasting, offering tools that can learn directly from large, noisy, and 

nonlinear datasets. Instead of solving complex differential equations, AI leverages 

patterns in observational data to make predictions. Several AI methods have been 

explored in solar-terrestrial physics: 
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• Time Series Prediction Models: Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) networks are specialized forms of recurrent 

neural networks that are well-suited for handling sequential data, as they can 

effectively model both long-range and short-range temporal dependencies. 

These models have shown significant success in forecasting solar and 

geomagnetic activity indices such as sunspot number, Kp, and Dst indices by 

learning complex nonlinear temporal patterns. For India, where space weather 

impacts satellite-based services and polar navigation, LSTM and GRU models 

can provide reliable forecasts of the Pi index several hours to days ahead, 

enhancing operational safety and planning. 

• Image Recognition Models: Convolutional Neural Networks (CNNs): It can 

classify solar images (from SOHO, SDO, or Aditya-L1) to detect emerging 

active regions and flare precursors (Gopalswamy, 2009). This capability can 

strengthen early-warning systems for aviation and satellite operators in India’s 

fast-expanding civil aviation sector. 

• Classification and Regression Models: Algorithms like Random Forests, 

Support Vector Machines (SVM), and XGBoost have been widely applied for 

predictive modelling and classification tasks across various domains. have 

been applied to space weather data to predict the geo effectiveness of Coronal 

Mass Ejections (CMEs) based on parameters like their speed, angular width, 

and solar source location. These models help distinguish between high-impact 

and low-impact solar events, enabling proactive mitigation strategies for 

vulnerable infrastructures such as India’s power grids. 

 These machine learning techniques are increasingly essential to modern 

weather forecasting systems, complementing traditional physics-based models with 

faster, data-driven insight and supporting enhanced decision-making. 

• Hybrid Physics–AI Models: Physics provides the causal framework 

necessary to understand the chain of solar–terrestrial interactions, while AI 

contributes the ability to recognize complex, nonlinear patterns in large 

datasets. By embedding physics-informed constraints into AI architectures, 

forecasts can become not only more accurate but also more interpretable, 

bridging the gap between theoretical understanding and operational needs. In 

the context of Viksit Bharat@2047, such hybrid models hold the potential to 

ensure India’s self-reliance in space weather forecasting, thereby reducing 

dependence on foreign prediction centres. Most significantly, physics-informed 

AI approaches integrate observational data with theoretical principles, 

balancing predictive accuracy with interpretability (Camporeale, 2019). These 

hybrid methods also reduce computational delays and enhance performance 

in nonlinear regimes, offering a sustainable pathway toward robust, real-time 
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space weather forecasting systems. Physics provides causal understanding, 

while AI offers pattern recognition. Embedding physics-informed constraints 

into AI models makes predictions both accurate and interpretable. For Viksit 

Bharat@2047, such hybrid approaches can support self-reliance in space 

weather forecasting and reduce dependence on foreign centres. 

Context for Viksit Bharat 

• India’s power grid expansion and renewable energy adoption make grid 

stability highly vulnerable to geomagnetic storms. AI-driven forecasts could 

protect millions from blackouts. 

• With the rise of Digital India, uninterrupted GPS, telecom, and internet 

connectivity will be indispensable; AI-enabled early warnings safeguard this. 

• Aditya-L1 mission data can be combined with AI for indigenous forecasting 

tools, empowering India’s leadership in the global space weather community 

by 2047. 

 The application of AI in space weather is not merely a scientific advancement 

but also a strategic driver of India’s sustainable growth, technological self-reliance, 

and resilience. More recent work has shifted towards AI and machine learning 

approaches to improve predictive accuracy. Camporeale (2019) reviewed the 

challenges of applying machine learning to space weather, noting its potential to 

capture nonlinear dependencies not accessible to traditional statistical or physics-only 

models. Gruet et al. (2018) employed Recurrent Neural Networks (RNNs) to forecast 

the DST index from solar wind parameters, showing significant improvements over 

baseline autoregressive methods. 

Other studies have focused on event-specific predictions. In (Bobra & 

Couvidat, 2015) used Support Vector Machines (SVMs) is used to classify solar active 

regions by flare productivity based on SDO/HMI magnetogram data, applied deep 

learning models for CME arrival time forecasts. These methods underscore the 

versatility of AI techniques across different facets of space weather forecasting, from 

flare prediction to geomagnetic storm severity. Collectively, this literature suggests 

that while sunspot numbers and CME counts remain useful proxies of solar activity, 

AI-enhanced models that incorporate solar wind and IMF parameters offer the best 

pathway forward. Such models can improve short- and medium-term forecasts of 

geomagnetic indices like the Pi Index, contributing directly to the themes of AI for a 

Better Tomorrow, Digital Sustainability, and AI for People and Planet. 

Data and Methods 

 To evaluate the potential of artificial intelligence (AI) for Pi Index forecasting, 

we integrated solar, interplanetary, and geomagnetic datasets, which were pre-

processed into synchronized time‐series before model training. Monthly Sunspot 
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Numbers (SSN) were obtained from SILSO (Royal Observatory of Belgium) as a 

measure of solar magnetic variability. Coronal Mass Ejection (CME) parameters 

(speed, width, onset time) were taken from the SOHO/LASCO catalogue (CDAW Data 

Centre) and aggregated monthly to capture eruptive event statistics. Near‐Earth solar 

wind and IMF data were sourced from NASA OMNI-Web (1‐hour resolution 

propagated to Earth). Parameters included IMF Bz, solar wind speed (V), and proton 

density (Np), later averaged to 3‐hour cadence to align with geomagnetic indices. 

Modelling Approaches 

• Baseline Physics–Statistical Benchmark: To provide a reference, simple 

correlations were first computed. Pearson coefficients quantified linear 

associations between SSN and Pi Index, while Spearman’s rank captured 

nonlinear monotonic trends. This step established the explanatory power of 

traditional indicators. 

• AI Models: LSTM Recurrent Neural Network.  The LSTM model was trained 

on multivariate time series inputs, including SSN, CME statistics, solar wind 

speed, IMF Bz, and density. Data were normalized and segmented into 60-

month sliding windows to capture both short-term variability and long-term 

solar cycle patterns. The LSTM architecture, with memory cells and gating 

mechanisms, enabled the model to retain long-range dependencies. 

Supervised learning was used to map input sequences to next-step Pi index 

predictions. 

• Random Forest Regression: The Random Forest model utilized event-based 

CME and solar wind parameters as inputs. As an ensemble of decision trees, 

it effectively captured nonlinear interactions among drivers while providing 

feature importance estimates, enhancing interpretability of the results. 

• Validation: Both models were benchmarked against observed Pi Index values 

using coefficient of determination (R²) and root mean square error (RMSE), 

providing a quantitative comparison of statistical versus AI approaches. 

Geomagnetic Response (Pi Index) 

The Pi Index values, used as a proxy for polar cap geomagnetic disturbance, 

were derived from high‐latitude magnetometer networks. Hourly Pi index values were 

averaged to 3‐hour resolution, consistent with the Kp‐index format, thereby ensuring 

comparability across modelling approaches. The Pi Index captures enhancements 

associated with both CME‐driven storms and HSS‐related recurrent activity. 

Case Study: Pi Index Forecasting with AI 

 The Polar Cap (Pi) Index is a widely used geomagnetic indicator that reflects 

high-latitude disturbances in Earth’s magnetosphere. It is particularly valuable as it 

responds rapidly to interplanetary magnetic field (IMF) fluctuations, especially 
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southward Bz, and solar wind speed. Since India’s infrastructure expansion includes 

aviation (polar routes), satellite navigation, and renewable energy grids, reliable Pi 

Index forecasting is of national importance for Viksit Bharat@2047. Accurate 

prediction of the Pi Index is therefore an essential element in building a more resilient 

and sustainable digital society. 

 

Figure 1: AI-Enhanced Pi Index Forecasting for Space Weather Applications 

Geomagnetic Response (Pi Index) 

The Pi Index values, used as a proxy for polar cap geomagnetic disturbance, 

were derived from high‐latitude magnetometer networks. Hourly Pi index values were 

averaged to 3‐hour resolution, consistent with the Kp‐index format, thereby ensuring 

comparability across modelling approaches. The Pi Index captures enhancements 

associated with both CME‐driven storms and HSS‐related recurrent activity. 

Results 

 Model performance comparison for pi index forecasting using linear 

regression, random forest and LSTM is shown in Table 1. The bar chart in Figure 2 

shows R2 score (blue bar chart) and RMSE (green, right axis). The LSTM 

demonstrates best performance with the highest R2 and lowest RMSE, indicating 

superior predictive capability. The correlation analysis indicates that the Pearson 

correlation between SSN and the Pi Index was 0.42, indicating a moderate 

relationship. However, when SSN was combined with CME speed and IMF Bz, the 

correlation improved significantly to 0.71.  

As shown in Figure 2 Linear Regression exhibited limited predictive power (low 

R², high RMSE), while Random Forest achieved moderate improvements. The LSTM 

network outperformed both, attaining the highest R² and lowest RMSE, underscoring 

its effectiveness in capturing nonlinear temporal dependencies for Pi Index 

forecasting. 
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Table 1: AI Forecasting Performance 

Model Input Variables R² 
Score 

RMSE (Pi 
Index units) 

Notes 

Baseline Linear 
Regression 

SSN only 0.18 4.2 Weak explanatory 
power 

Random Forest 
Regression 

SSN, CME 
speed, Bz, V 

0.68 2.1 Good at event 
classification 

LSTM Neural 
Network 

SSN, CME 
count, CME 
speed, Bz, V 

0.79 1.6 Captures nonlinear & 
temporal patterns 

 

 

Figure 2: Model Performance for Pi Index Forecasting 

Discussion 

 The results illustrate that sunspot number alone is insufficient for reliable 

forecasting of geomagnetic disturbances. This aligns with earlier studies 

(Gopalswamy et al., 2009; Verbanac et al., 2011), which showed that non–sunspot 

related CMEs, particularly from high-latitude filament eruptions, weaken the SSN–

CME correlation during solar maximum. By integrating CME physical parameters and 

interplanetary conditions into AI models, predictive accuracy improved substantially. 

The LSTM network outperformed Random Forest by better capturing temporal 

dependencies and the nonlinear coupling between solar drivers and geomagnetic 

response. 



Physics-Informed AI for Space Weather Forecasting and Sustainable Development 97 

For India, this has strong practical implications: 

• AI for a Better Tomorrow: By improving early-warning systems for 

geomagnetic storms, AI contributes to safeguarding society’s digital 

infrastructure. 

• Digital Sustainability: Reliable forecasts protect satellites, communication 

systems, and energy grids—cornerstones of a sustainable digital economy. 

• AI for People and Planet: Forecasting geomagnetic disturbances supports 

public safety (aviation, navigation) and ensures continuity of services that 

people depend on daily. 

• Aviation & Navigation: Forecasting Pi Index spikes ensures safe rerouting of 

polar flights. 

• Power Grids: Improved warnings for geomagnetically induced currents (GICs) 

help prevent blackouts. 

• Satellite Safety: AI-enhanced predictions can guide satellite operators to 

temporarily shut down vulnerable systems during geomagnetic storms. 

AI-driven space weather forecasting safeguards critical infrastructure—power 

grids, satellite constellations, and renewable energy systems—thereby ensuring 

business continuity and economic stability. For India, reliable forecasting enhances 

aviation safety, supports digital connectivity, and protects energy transitions. Globally, 

AI-based systems foster resilience and sustainable development. By integrating 

physics and AI, India can position itself as a leader in space weather resilience, 

aligning with Viksit Bharat@2047. 

 

Figure 3: AI-enhanced Pi Index forecasting framework linking solar inputs and 

AI models to forecasts and applications, supporting Viksit Bharat 2047 

sustainability goals 
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As highlighted in Table 2, traditional linear regression models explain less than 

20% of the observed variance, offering only weak predictive power and limited utility 

for practical early-warning systems. By integrating CME physical parameters and 

interplanetary drivers like IMF Bz into AI models, predictive accuracy improves 

dramatically. Random Forest regression and LSTM neural networks both show 

substantial gains, with LSTM performance reaching an R² of 0.79 and much lower 

RMSE, capturing nonlinear and temporal patterns in geomagnetic activity essential for 

operational forecasting. 

Figure 3 depicts the AI-enhanced Pi Index forecasting framework, which brings 

together diverse solar and interplanetary datasets into a unified, machine learning-

driven operational pipeline. This holistic approach not only improves forecast 

timeliness and reliability but also supports critical infrastructure resilience—for 

example, timely protections for power grids, aircraft navigation, and satellite systems. 

Table 2: Comparative summary of AI–physics hybrid models for space weather 

forecasting and their alignment with sustainable development goals (SDGs). 

Model 
Approach 

Key Metrics Improvement 
Over Baseline 

Sustainability Impact 

Baseline 
Linear 
Regression 

R² = 0.18, RMSE = 
4.2 

Reference 
(weak predictive 
power) 

Limited value for early 
warnings, less impactful 
for infrastructure 

Random 
Forest 
Regression 

R² = 0.68, RMSE = 
2.1 

+50% increase 
in R², ~50% 
RMSE reduction 

Better event 
classification, supports 
grid protection 

LSTM Neural 
Network (AI) 

R² = 0.79, RMSE = 
1.6 

+75% increase 
in R², ~62% 
RMSE reduction 

Captures nonlinear 
temporal patterns, 
enables timely, robust 
forecasts 

Hybrid 
Physics-
Informed AI* 

Expected further R² 
improvement (~0.8+) 
and latency 
reduction (5-10x 
faster forecast) 

Enhances 
interpretability 
and reliability 

Reduces supercomputing 
energy use, improves 
operational resilience by 
accurate, timely warnings 
for critical infrastructure 

 

Challenges and Future Directions  

 Despite significant progress, several challenges remain in advancing AI-driven 

space weather forecasting. A major limitation is data sparsity and quality—solar wind 

and IMF datasets often have gaps, and the Pi Index has limited long-term records 

compared to indices like Dst or Kp (King & Papitashvili, 2005).  Another challenge is 

the explainability of AI models: deep learning architectures such as LSTMs act as 

“black boxes,” making it difficult to interpret the physical basis of predictions. Next 

most important challenge lies in translating technical advancements into policy 

frameworks. To fully realize the benefits of AI-driven space weather forecasting, 
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national agencies must establish protocols for integrating model outputs into disaster 

management systems, defence readiness plans, and energy sector policies. Bridging 

this science–policy gap is critical for ensuring that predictive models become tools for 

governance and resilience planning in the Viksit Bharat@2047 vision. 

Future work should focus on physics-informed machine learning (PIML), which 

embeds magnetohydrodynamic (MHD) constraints into AI models to improve 

interpretability and reliability. Expanding training sets using multi-cycle solar datasets 

and integrating helio-physics data assimilation (HDA) approaches can further enhance 

predictive skill. Global collaborations such as NASA’s CCMC and ESA’s Space 

Situational Awareness (SSA) programs provide a blueprint for coordinated progress. 

By 2047, India can play a leading role in developing a robust, sustainable, and AI-

empowered space weather forecasting framework that safeguards both digital and 

physical infrastructure. 

Conclusion 

 This study examined the links between solar activity indicators (sunspot 

numbers, CME occurrence), solar wind parameters (IMF Bz velocity, density), and the 

geomagnetic response represented by the Pi Index. The results show that sunspot 

numbers alone provide only limited predictive capability (correlation ≈0.42), but 

predictive power increases significantly (≈0.71) when CME characteristics and IMF Bz 

are incorporated, underscoring the importance of interplanetary drivers in shaping 

geomagnetic activity. Within the modelling framework, artificial intelligence methods 

clearly outperformed traditional statistical techniques. While linear regression based 

on SSN accounted for less than 20% of the variance, Random Forest regression 

achieved higher accuracy by This study examined the links between solar activity 

indicators (sunspot numbers, CME occurrence), solar wind parameters (IMF Bz, 

velocity, density), and the geomagnetic response represented by the Pi Index. The 

results show that sunspot numbers alone provide only limited predictive capability 

(correlation ≈0.42), but predictive power increases significantly (≈0.71) when CME 

characteristics and IMF Bz are incorporated, underscoring the importance of 

interplanetary drivers in shaping geomagnetic activity. 

These advancements highlight the transformative potential of integrating 

physics-based understanding with AI-driven approaches, enabling faster, more 

accurate, and interpretable space weather forecasts. Such progress is crucial for 

safeguarding critical infrastructure, enhancing resilience, and promoting sustainable 

technological growth in India’s Viksit Bharat@2047 vision. Looking forward, expanding 

physics-informed machine learning models, improving data assimilation, and fostering 

collaborative global research will further strengthen forecasting capabilities, ensuring 

preparedness in the face of dynamic solar-terrestrial interactions and supporting 

sustainable development worldwide. 
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