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ABSTRACT 
 

This article uses Beddington and Holling type-II functional response to explore a tritrophic food web 
model system with prey-predator such as prey, midpredator, and top predator. This model’s positivity, 
boundedness, local stability, and global stability were investigated. In addition, stability requirements are 
derived using the Routh-Hurwitz criterion. Both theoretical and numerical discussions of Hop bifurcation 
are included. Additionally, the Center Manifold Theorem has been used to establish the stability of non-
hyperbolic equilibrium sites. Additionally, Matlab ode45 software has been used for numerical analysis, 
demonstrating the dynamic character of the model system.  
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Introduction 

 In ecology, interactions between predators and prey occur at higher trophic levels and predators 
can affect prey populations directly and indirectly [1, 2]. While thepredator’s indirect influence involves the 
prey population, which has the potential toalter prey behavior, the predator’s direct effect involves 
predating the prey [3, 4, 5].Functional response is a major aspect of the ecological model system. 
Functional responses that are used in many biological studies like Holling type I-IV, Ivlev, Crowly-Martin, 
Beddinton-DeAngelis, etc. Holling type II functional response is bounded and correct for biological 
systems which conclude that Holling type II functional response is more appropriate [6, 7, 8, 9, 10, 11]. 
Many researchers performed Holling type I functional response in higher order models [12, 13, 14, 15, 
16]. For the higher order model Beddington–DeAngelis functional response is used. Many studies have 
discussed bifurcation analysis of the prey-predator system providing for prey refuge, and the existence of 
bifurcation (transcritical, Hopf). When one root is negative and the next is purely complex conjugate, this 
type of equilibrium point is non-hyperbolic. The stability of equilibrium point Center manifold theorem has 
been performed [17]. Group defense plays a major role in the dynamical system which plays an important 
part in prey- predator model system. When prey species are in large numbers, they have defense ability 
by creating herds, which shows decreased predation of the prey [18]. Some studies consider the impact 
of toxins which are harmful to many aquatic organisms in marine systems [19]. It is evident that in the 
process of algal blooms, algal aggregation plays a significant role. It has been found in past decades that 
the prey-predator stabilityhas been affected by toxic substance [20].Filter-feeding fish can reduce the 
algal bloom population which affects the healthy development of the marine system. Filter-feedingfish is 
widely applied in water bodies which is a direct method of manipulation to control cyanobacterial algal 
blooms [21].Some authors investigated the harvesting of prey and predators, when the density of the 
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harvested population is large such harvesting increases to a limit value [22, 23]. Many authors have also 
included alternative food sources in their research and the behavior of a system is significantly influenced 
by substituting food sources for predators. When the density of favored prey is low, predators move to 
other meals [24, 25, 26].In this study, we considered the ecological terms logistic growth rate, 
consumption of prey by mid predator using Beddington function response, and consumption of 
midpredator by the top predator using Holling type II functional response. Beddington-DeAnglis function 
response and Holling type II functional response have not been used together. In this study, we 
illustrated the local and global stability of model system. Then, we performed the bifurcation by using 
constant c. Also, we found the stability using the Center Manifold theorem. Finally, theoretical results are 
found with some numerical analysis. 

The importance of this article is: 

• To introduce three-dimensional food chain prey predator model by using Beddington-DeAnglis 
functional response and Holling type II functional response. 
▪ To check the stability and bifurcation of the system. 
▪ To know the concept of Center manifold theorem. 
▪ To illustrate numerical analysis of the model system. 

 The article is given below: In part 2, model formulation of the non-spatial system has-been 
given. In part 2.1, dynamical behavior is analyzed. It is shown that equilibrium points exist then stability 
has been checked at each of the equilibrium points. Moreover, bifurcation of the model has been 
performed. In part 3, numerical simulations have been given. Finally, in part 4, discussion and conclusion 
has been given. 

Motivation and Novelty 

 In our paper formulation of mathematical model based on three species food chain with prey 
refuge have been studied using Beddington DeAnglis and Holling type II functional responses. The 
Beddington-DeAnglis and Holling type II responses are especially helpful in modeling situations in which 
predators become more effective at increasing prey densities and less effective at lower densities. To 
improve the system's stability, the study combines these two functional responses together. This method 
can result in more resilient and stable ecosystem dynamics and enables a more sophisticated portrayal 
of predator-prey interactions. The attack rate of a generalist predator significantly influences the 
mathematical modeling of predator-prey dynamics. The attack rate directly determines the form and 
parameters of the functional response, which describes how the predator's consumption rate changes 
with prey density. Higher attack rate, increases the predator's efficiency in capturing prey, leading to a 
rapid decline in prey population. This can result in greater oscillations in population sizes and potentially 
destabilize the system if the prey population drops too low. Lower attack rate, decreases the predator's 
efficiency, allowing the prey population to grow, which might reduce oscillations and stabilize the system. 
Predator prey models demonstrate inhibitory effects in population dynamics, since the presence of 
predators slows the increase of prey populations. This interaction can keep the prey from growing too 
much and stabilize the populations. Also, the Center Manifold Theorem is a powerful tool in dynamical 
systems theory, particularly useful for analyzing the stability of non-hyperbolic equilibrium points. The 
Center Manifold theorem facilitates the analysis of a system's stability by lowering its dimensionality in 
the vicinity of a nonhyperbolic equilibrium point. Main target of this study is to introduce refuge ability and 
prevented predation of the prey. This model is completely new as it integrates the Beddington-DeAngelis 
functional response and the Holling type II functional responses, which has not been previously 
combined in ecological research. 

The article is given below: In part 2 , model formulation of the non-spatial system has been 
given. In part 3, some definitions related to work are given. In part 4, dynamical behavior is analyzed. It is 
shown that equilibrium points exist then stability has been checked at each of the equilibrium points. 
Moreover, Global stability, effect of attack rate of generalist predator on specialist predator, bifurcation of 
the model, center manifold theorem have been performed. In part 5, numerical simulations have been 
given. Finally, in part 6, discussion and conclusion has been given. 

System Model Formulation 

 Here, we consider three-dimensional interaction model. To propose the model system the 
assumptions are as below: 
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• Prey density is shown by U, mid-predator density is shown by V, and top predator density is 
shown by W. 

• The prey species becomes larger with growth rate A1. 

• K shows carrying capacity. 

• Prey and mid-predator succeed Bedding ton functional response. 

• Mid-predator and top predator succeed Holling type-II functional response. 

 

Fig. 1 Schematic diagram of model system 

 The model is expressed as below: 

𝑑U

𝑑𝑇
= 𝐴1U(1 −

U

K
) −

𝐸1UV

U + AV + B
− 𝐸2𝑈𝑊 (1)

𝑑V

𝑑𝑇
=

𝛼1𝐸1UV

U + AV + B
− 𝐷1V −

𝐶1𝑉𝑊

V + β
(2)

𝑑W

𝑑𝑇
= 𝛼2𝐸2UW − 𝐷2W +

𝛼3𝐶1𝑉𝑊

V + β
(3)

 

Subject to IC: U(0) > 0, 𝑉(0) > 0,𝑊(0) > 0. Now, we reduce the parameters, for this purpose, 

we put u =
U

K
,  A1T = t, v =

E1V

A1K
, w =

WE2

A1K
. The system turns as: 

du

dt
= u(1 − u) −

uv

u + cv + β1

− uw (4)

dv

dt
=

α1uv

u + cv + β1

− m2v −
c1vw

v + b
(5)

dw

dt
= m3uw − m4w +

m5wv

v + b
(6)

 

u(0) > 0, 𝑣(0) > 0,𝑤(0) > 0. Here, c =
AA1

E1
, β1 =

B

K
, m2 =

D1

E1
, b =

βE1

A1K
, m4 =

D2

E2
, m5 =

α3C1

E2
, m3 = α2K. 

Dynamical Behavior 

 In this part, we will discuss positivity, boundedness, stability, and bifurcation of the system. 

Table 1. Ecological Parameters are described as: 
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Parameters Meaning 

A1 Growth rate 

E1 mid predator's consumption rate on prey 

A Inhibitory effect 

K Carrying capacity 

B Half saturation constant 

E2 predator's consumption rate on prey 

α1 Conversion of prey biomass into mid predator 

D1 mid predator's death rate 

C1 Consumption rate of mid predator by top predator 

β Predator interference parameter 

α2 Constant rate of prey biomass into top predator 

D2 top predator's death rate 

α3 Constant rate of mid predator biomass into 
 

• Positivity 

 Populations in the system never go extinct because of the positives we discovered. For this 
purpose, we integrate the equations by using ICs as below 

u(t) = u(0) (∫  
t

0

  [(1 − u) −
v

u + cv + β1

− w]ds) (7)

v(t) = v(0) (∫  
t

0

  [
α1u

u + cv + β1

− m3 −
c1w

v + b
] ds) (8)

w(t) = w(0)(∫  
t

0

  [m3u − m4 +
m5v

v + b
] ds) (9)

 

Hence, if the initial conditions are non-negative then the right side is positive. 

• Boundedness 

 In this part, we prove the boundedness of the system. It indicates the system is conducted in an 
appropriate manner. 

Theorem 1: Solutions of the model system (1)-(3) is uniformly bounded in R+
3 . 

Proof: Let solution of the model (1)-(3) is (u(t), v(t),w(t)). 

Let us suppose a function ψ(u, v,w) = u +
v

α1
+

c1w

α1m5
, then we have 

dψ

dt
= u(1 − u) + [

c1m3

m5α1
−

1]uw −
w

α1
[m2 +

m4c1

m5
] 

Then we get l > 0, in a way that 
dψ

dt
+ ζϕ ≤ l, which implies that: ϕ(t) ≤ ϕ(0)e−ζt +

l

ζ
(1 − e−ζt) ≤

max (ϕ(0),
l

ζ
). Hence, the theorem is proved. 

• Equilibrium points and stability 

 This analysis gives four equilibrium points (i) E1 = (0,0,0) (ii) E2 = (1,0,0) (iii) E3 = (
m4

m3
, 0,

m3−m4

m3
 ) 

(iv) E4 = (ũ4, ṽ4, w̃4) 

• Stability analysis. 

 In this part, first, linearize the system to get the stability then find the Jacobian matrix. 

Theorem 2: Eigen values of J(E1) is a saddle point. 

Proof: Here E1 = (0,0,0). Then, J(E1) is J(E4) = [
1 0 0
0 −m2 0
0 0 −m4

] 

The eigenvalues of E1 are 1,−m2, −m4. Then, E1 is a saddle point. 

Theorem 3: E2 is LAS if 
α1

1+β1

< m2 and m3 < m4. 
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Proof: J(E2) is as follows: 

J(E2) =

[
 
 
 
 
 −1

−1

1 + β1

−1

0
α1

1 + β1

− m2 0

0 0 m3 − m4]
 
 
 
 
 

 

The eigen values of E2 are −1,
α1

1+β1

− m2 and m3 − m4. Therefore, E2 is LAS if 
α1

1+β1

< m2 and 

m3 < m4 

 Theorem 4: J(E3) is LAS if m2 >
α1(

m4
2

m3
2+β

m4
m3

)

(
m4
m3

+β1)
2 −

c1(m3−m4)

m3b
 and saddle point if m2 <

α1(
m4

2

m2
2ββ

m4
m3

)

(
m4
m3

+β1)
2 −

c1(m3−m4)

m3b
. 

Proof: E3 = (
m4

m3
, 0,

m3−m4

m3
), exists. Thus, the characteristic roots J(E3) is as given: 

α1(
m4

2

m3
2+β

m4
m3

)

(
m4
m3

+β1)
2 − m2 −

c1(m3−m4)

m3b
, λ2 and λ3 Here, λ2 and λ3 are characteristic roots of the equation λ

2 +
m4

m3
λ +

m4

m3
(m3 − m4) = 0.  Hence, J(E3) is LAS if m2 >

α1(
m4

2

m3
2+β

m4
m3

)

(
m4
m3

+β1)
2 −

c1(m3−m4)

m3b
 and saddle point if m2

α1(
m4

2

m3
2+β

m4
m3

)

(
m4
m3

+β1)
2 −

c1(m3−m4)

m3b
 

Theorem 5: E4 is LAS, if conditions satisfy (i) A, B and C > 0, (ii) AB > 𝐶. 

Proof: Now, for the equilibrium point E4 = (ũ, ṽ, w̃), exists. Thus J(E4) is as following: 

J(E4) = [

y11 y12 y13

y21 y22 y23

y31 y32 y33

] 

where, y11 = 1 − 2ũ −
cṽ2+β1ṽ

(ũ+cṽ+β1)
2 − w̃, y12 =

−(ũ2+β1ũ)

(ũ+cṽ+β1)
2 , y13 = 0, y21 =

α1(ṽ
2+β1ṽ)

(ũ+cṽ+β1)
2, 

y22 = [
α1(ũ

2+β1ũ)

(ũ+cṽ+β1)
2 − m2 −

bc1w̃

(ṽ+b)2
] , y23 =

−c1ṽ

(ṽ+b)
, y31 = m3w̃, y32 =

bm5w̃

(ṽ+b)2
y33 = m3ũ − m4 +

m5ṽ

(ṽ+b)
. 

The characteristic equation is as showing: 

λ
3 + Aλ

2 + Bλ + C = 0 (10) 

where, A = −(y11 + y22 + y33) 

B = y11y22 − y12y21 − y23y32

C = y11(y22y33 − y23y32) − y12y21y33
 

 Hence, E4 is LAS, as following conditions hold: (i) A, B and C > 0 (ii) AB > 𝐶. 

Global Stability Analysis 

Theorem 6: If we consider that 
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1 − 2ũ −
cṽ2 + β1ṽ

(ũ + cṽ + β1)
2 − w̃ > 0 (11)

[
α1(ũ

2 + β1ũ)

(ũ + cṽ + β1)
2 − m2 −

bc1w̃

(ṽ + b)2] (12)

m3ũ − m4 +
m5ṽ

(ṽ + b)
> 0 (13)

[1 − 2ũ −
cṽ2 + β1ṽ

(ũ + cṽ + β1)
2 − w̃] [

α1(ũ
2 + β1ũ)

(ũ + cṽ + β1)
2 − m2 −

bc1w̃

(ṽ + b)2] > [
−(ũ2 + β1ũ)

(ũ + cṽ + β1)
2] ( (13)

[
α1(ũ

2 + β1ũ)

(ũ + cṽ + β1)
2 − m2 −

bc1w̃

(ṽ + b)2] [m3ũ − m4 +
m5ṽ

(ṽ + b)
] >

−c1ṽ

(ṽ + b)
(15)

 

then E4 = (ũ, ṽ, w̃) is GAS. 

Proof: Characterize a Lyapunov function 

V = (ũ − ũ∗ − ũ∗ − ũ∗ln 
ũ

ũ∗) + (ṽ − ṽ∗ − ṽ∗ − ṽ∗ln 
ṽ

ṽ∗) + (w̃ − w̃∗ − w̃∗ − w̃∗ln 
w̃

w̃∗) 

Taking we differentiate w.r.t. t along the system solution, we get  

dV

dt
= −c11(ũ − ũ∗)2 − c22(p̃ − p̃∗)2 − c33(w̃ − w̃∗)2 + c12(ũ − ũ∗)(ṽ − ṽ∗) + c23(ṽ − ṽ∗)(w̃ − w̃∗). 

Where, c11 = 1 − 2ũ −
cṽ2+β1ṽ

(ũ+cṽ+β1)
2 − w̃, c12 =

−(ũ2+β1ũ)

(ũ+cṽ+β1)
2 , c13 = 0 

c21 =
α1(ṽ

2 + β1ṽ)

(ũ + cṽ + β
1
)
2 , c22 = [

α1(ũ
2 + β1ũ)

(ũ + cṽ + β
1
)
2 − m2 −

bc1w̃

(ṽ + b)2
] , c23 =

−c1ṽ

(ṽ + b)
, y31 = m3w̃, c32 =

bm5w̃

(ṽ + b)2
c33

= m3ũ − m4 +
m5ṽ

(ṽ + b)
 

if the following inequalities hold: 

c11 > 0, c22 > 0, c33 > 0, (16)

c12
2 < c11c22, (17)

c23
2 < c22c33 (18)

 

 It is easy to see that all the conditions are satisfied. Biologically, the boundedness and stability 
of a system show that the model system is well mannered. Furthermore, it implies that no species grows 
exponentially for a long period. 

Hopf-bifurcation of Non-spatial System 

 Here, we have established a theorem that clarifies Hopf bifurcation, where c stands for the 
bifurcation parameter. 

Theorem 7: Hopf-bifurcation occurs in model system (1)-(3), When c, crosses a threshold value 

c′, near E4 = (ũ, ṽ, w̃) if conditions hold as: A(c) > 0, 𝐶(𝑐) > 0, A(c′)B(c′) − C(c′) = 0 and [A(c′)B(c′)]
′
≠

C′(c′). 

Proof: It is easy to see that E4 is LAS. If threshold value c′ exist s.t. 

 A(c′)B(c′) − C(c′) = 0 

For c = c′ the characteristic equation is as: 

(λ
2(c′) + B(c ′)) (λ(c′) + A(c′)) = 0 

Roots are: −A(c′), ι√B(c′) and −ι√B(c′). If transversality condition 
Re(λ(B))

dc
|
c=c′

≠ 0 hold, then 

Hopf-bifurcation occurs at c = c′. roots are 

λ1(c) = μ(c) + ιν(c), 
λ2(c) = μ(c) + ιν(c), 
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λ3(c) = −A(c). 
Substituting into we get 

Q(c)μ′(c) − L(c)ν′(c) + M(c) = 0, 

L(c)μ′(c) + Q(c)ν′(c) + N(c) = 0, 
Where, 

Q(c) = 3u2(c) + 2A(c)μ(c) + B(c) − 3ν2(c) 
L(c) = 6μ(c)ν(c) + 2Aν(c) 

M(c) = μ2(c)A′(c) + c′μ(c) + C′(c) − A′(c)ν2(c) 

N(c) = 2μ(c)ν(c)A′(c) + B′(c)ν(c). 

Here, μ(c) = 0, ν(c) = √B(c′), we get 

Q(c′) = −2B(c′), L(c′) = 2A(c′)√B(c′),M(c′) = C′(c′) − A′(c′)B(c′), N(c′) = B′(c′)√B(c′). 

Solving μ′(c), we get: 

Re(λj(c)

dc
|
c=c′

= μ′(c)c=c′ = −
L(c′)N(c′)+Q(c′)M(c′)

Q2(c′)+L2(c′)
=

1

2

c′(c′)−(A(c′)B(c′)))
′

A2(c′)+B(c′)
≠ 0. If (A(c′)B(c′))

′

≠ C′(c′) and 

λ3(c
′) = −A(c ′) < 0. Hence the theorem is proved. 

Center Manifold Theorem 

Center Manifold theorem is applied to check stability if one or more roots are zero and next one 
is negative real part.Now we shift E(u1, v1, w1) at the origin and get the transformation u = u + u1, v = v +
v1, w = w + w1 in the system (4)-(6) and we get 

du

dt
= x11u + x12v + x13w + x14u

2 + x15uv + x16v
2 + x17vw + x18w

2 + x19uw 

dv

dt
= x21u + x22v + x23w + x24u

2 + x25uv + x26v
2 + x27vw + x28w

2 + x29uw 

dw

dt
= x31u + x32v + x33w + x34u

2 + x35uv + x36v
2 + x37vw + x38w

2 + x39uw 

Here, the coefficients xij are given in Appendix A. System turns as: 

Stability and bifurcation study of the predator-prey model using the Beddington-deAngelis 
functional respons 

[
u̇
v̇
ẇ

] = [

x11 x12 x13

x21 x22 x23

x31 x32 x33

] [
u
v
w

] + [
x14u

2 + x15uv + x19uw

x24u
2 + x25uv + x27uw

x37vw + x39uw

] 

Theorem 8: Eigen values of J(E1) is a saddle point. Proof: For E1 the above system reduce to, 

[
u̇
v̇
ẇ

] =

[
 
 
 
 
 −1

−1

1 + β1

−1

0
α1

1 + β1

−m2

0 0 m3 − m4]
 
 
 
 
 

[
u
v
w

] + [
x14u

2 + x15uv + x19uw

x24u
2 + x25uv + x27uw

x37vw + x39uw

] 

E.V. is given as −1,
α1

1+β1

− m2 and m3 − m4. If we consider 
α1

1+β1

= m2 then the equilibrium point E1(1,0,0) 

is non-hyperbolic type. 

Now we use the transformation 

[
u
v
w

] = R [
x
y
z
], where R = [

1 −q12 1
0 1 0
0 0 q33

] 

Then the system turns as, 

[
ẋ
ẏ
ż
] = [

−1 0 0
0 0 0
0 0 m3 − m4

] [
x
y
z
] + [

H1

H2

H3

] 
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We can see Hi in Appendix B. Now Wc(0) = (x, y, z)ϵR3: x = g1(y), z = g2(y), g1(0) = 0, g2(0) =
0,Dg1(0) = 0, Dg2(0) = 0, To calculate Wc(0), let us consider x = g1(y) = c11y

2 + c12y
3 + O(‖y‖4), z =

g2(y) = c21y
2 + c22y

3 + O(‖y‖4). Now we find c11 = 0, c12 = N13, c21 = 0, c22 = 0. Thus, manifold is shown 

by ẏ = N22y
2 + N21N13y

4, it is a saddle point. Hence proved. 

Theorem 9: At E4, the periodic solution will be stable and unstable if Λ < 0 and Λ > 0 
respectively. 

Proof: If Hopf bifurcation exists in the system, it implies that characteristic equations have purely 

complex conjugates and one negative real root. The roots are given as −A1, i√A2, −i√A2. It is non-

hyperbolic type roots. 

 

Therefore:[
u
v
w

] = A [
x
y
z
] 

Where, [

g11 g12 g13

g21 g22 g23

g31 g32 g33

] , gij is given in Appendix C. 

The system becomes: 

[
ẋ
ẏ
ż
] = [

0 −√A2 0

√A2 0 0

0 0 −A1

] [
x
y
z
] + [

e1

e2

e3

] 

 We can see AppendiX D to check the values of e1, e2 and e3. Characteristic equations have 
purely complex conjugate and one negative real root. Therefore, we are unable to find stability, so the 
Center manifold is given as: 

Wc(0) = (x, y, z)ϵR3: z = g(x, y), |x| < δ1, |y| < δ2, g(0,0) = 0,Dg(0,0) = 0. То calculate the center manifold 

theorem, we consider z = g(x, y) = a1x
2 + a2y

2 + a3xy + O(‖x‖3), Here we find a1 =
1

A1
(A31 −

a3√A2), a2 =
1

A2
(A32 − a3√A2) and a3 =

A1A2A34−2√A2(A32A1−A31A2)

(2A1+2A2+A1
2)A2

. 

Thus, by using the center manifold: 

[
ẋ
ẏ
] = [

0 −√A2

√A2 0
] [

x
y] + [

f1
f2

] 

Where f1(x, y) = A11x
2 + A12y

2 + A14xy + A16a1x
3 + A15a2y

3 + 
(A15a1 + A16a3)x

2y + (A15a3 + A16a2)y
2x + O(‖X‖4), f2 = A21x

2 + A22y
2 + A24xy + A26a1x

3 +
A25a2y

3 + A25a2y
3 + (A25a1 + A26a3)x

2y + (A25a3 + A26a2)y
2x + O(‖X‖4). 

Now, we calculate the First Lyapunov exponent Λ at (0,0,0), to show stability or instability of E4. 

Λ =
1

16
(f1(xxx) + f1(yyy) + f2(xxx) + f2(yyy)) +

1

16√A2

[f1(xy)(f1(xx) + f1(yy)) − f2(xy)(f2(xx) +f2(yy))]

− f1(xx)f2(xx) + f1(yy)f2(yy) 

=
1

16
[6A16a1 + 2(A15a3 + A16a2) + 2(A25a1 + A26a3) + 6A25a3]

+
1

16√A2

[2A14(A11 + A12) −2A24(A21 + A22) − 4A11A21 + 4A12A22] 

Hence theorem is proved. 

Numerical Simulation 

 Here, we will perform numerical analysis supporting the analytical findings. We used ode 45 
solver in MATLAB by taking the parameter values as: β1 = .1, c = 0.65,α1 = .35,m2 = .25, c1 = 3.15, b =

0.5,m3 = .01,m4 = .5,m5 = 4.93. First, we see the outcome of constant c as shown in Figs. 2-6. The 

diagrams indicate that the system become unstable at c = 0.4, as we increase the value of c it tends to 

Hopf bifurcation at the critical value c′ = 0.37, to better understand, at different values of c, we observe 
some of time series and phase portrait diagrams. 
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Discussions and Conclusions 

This work investigates the dynamical nature of system by using Beddington-DeAngelis and 
Holling type-II functional response to inspect the interaction between prey and predators. It shows a 
major role to preserve the dynamical system balance. A schematic illustration is provided in Fig. 1 to help 
visualize the model formulation. The proposed system is investigated using differential equation theory 
and several dynamical techniques like boundedness, local stability, global stability, and bifurcation. Then, 
we demonstrated that the solutions are uniformly bounded. We determined equilibrium points and 
examined their stability. We found a Hopf bifurcation see in Fig. 2-6 with parameter c. As the value of c 
become larger system become unstable. For advancement, we have given the numerical solutions using 
MATLAB to validate analytical results for temporal model system. 

 

Figure 2: Existence of Hopf bifurcation c = 0.4 

 

Figure 3: Existence of Hopf bifurcation c = 0.37 
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Figure 4: Existence of Hopf bifurcation c = 0.34 

 

Figure 5: Existence of Hopf bifurcation c = 0.3 

  

Figure 6: Existence of Hopf bifurcationc = 0.25 
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Appendices 

• Appendix A 

x11 = 1 − 2u −
(cv2+β

1
v)

(u+cv+β
1
)

2 − w, x12 = [
−(ũ

2+β
1
ũ)

(ũ+cṽ+β
1
)

2] , x14 = −2 +
2(cv2+β

1
v)

(ũ+cṽ+β
1
)

3 , x15 =
2(ũ

2+β
1
ũ)

(ũ+cṽ+β
1
)

3 −

(2ũ+β
1
)

(ũ+cṽ+β
1
)

2 , x16 = 0, x17 = −1, x18 =
2c(cu2+β

1
u)

(u+cv+β
1
)

3 , x19 = 0, x21 =
α1(cũ

2+β
1
ũ)

(ũ+cṽ+β
1
)

2 , 

x22 = [
α1(ũ

2+β
1
ũ)

(ũ+cṽ+β
1
)

2 − m2 −
bc1w̃

(ṽ+b)2
] , x23 =

−c1ṽ

(ṽ+b)
, x24 =

−2α1(cv2+β
1
v)

(u+cv+β
1
)

3 , x25 =
−2cα1(cv2+β

1
v)

(u+cv+β
1
)

3 +

α1(2cv+β
1
)

(u+cv+β
1
)

2 , x26 = 0, x27 = 0, x28 =
−2cα1(cu2+β

1
u)

(u+cv+β
1
)

3 +
(2bcc1w)

(v+b)3
, x29 = 0, x31 = m3w̃, x32 =

bm5w̃

(ṽ+b)2
 

x33 = m3ũ − m4 +
m5ṽ

(ṽ+b)
, x34 = 0, x35 = 0, x36 = m3, x37 = 0, x38 =

−2bm5w

(v+b)3
, x39 = m3. 

• Appendix B 

 The values of Hi is as follows: 

H1 = x2 + N11xy + M12xz + M13y2 + M14yz + M15z2, H2 = M21xy + M22v2 + M23yz,H3 = M31xz +

M32yz + M33z2. 

• Appendix C 

Here, g
11

= −A2, g12
= 0, g

13
= A1

2 − x23x32, g21
= x31x23, g22

= −x21√A2,g23
= x31x23 −

x21A1, g31
= 0,g

32
= −x31√A2, g23

= x21x32 − x31A1. 

• Appendix D 

e1 = D11x2 + D12y2 + D13z2 + D14xy + D15yz + D16zx 

e2 = D21x2 + D22y2 + D23z2 + D24xy + D25yz + D26zx 

e3 = D31x2 + D32y2 + D33z2 + D34xy + D35yz + D36zx 

with, D11 = C11g
11
2 + A12g

11
g

21
, 

D12 = C14g
22

g
32

, 

D13 = C11g
13
2 + C12g

13
g

23
+ C13g

13
g

33
+ C14g

23
g

33
, 

D14 = C12g
11

g
22

+ C13g
11

g
32

+ C14g
21

g
32

 

D15 = C11g
13

g
22

+ C13g
13

g
32

+ C14g
22

g
33

+ C14g
23

g
32

, 

D16 = 2C11g
11

g
13

+ C12g
11

g
23

+ C12g
13

g
21

+ C13g
11

g
33

+ C14g
21

g
33

 

The similar expression for D2i and D3i will be obtained only replacing C1j by C2j and C3j 

respectively. 
C11 = t11x14 + t12x24 

C12 = t11x15 + t12x25 

C13 = t11x19 + t13x39 

C14 = t12x27 + t13x39 
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C21 = t21x14 + t22x24 

C22 = t21x15 + t22x25 

C23 = t21x19 + t23x39 

C24 = t22x27 + t23x39 

C31 = t11x14 + t12x24 

C32 = t31x15 + t32x25 

C33 = t31x19 + t33x39 

C34 = t32x27 + t33x39 
Where, 

Stability and bifurcation study of the predator-prey model using the Beddington-deAngelis 
functional response 

A
−1 = [

t11 t12 t13

t21 t22 t23

t31 t32 t33

] 

with t11 =
g

22
g

33
−g

23
g

32

|A|
, t12 =

g
32

g
13

|A|
, t13 =

−g
13

g
22

|A|
, t21 =

−g
21

g
33

|A|
, t22 =

g
11

g
33

|A|
, t23 = 

g
13

g
21

−g
11

g
23

|A|
, t31 =

g
21

g
32

|A|
, t32 =

−g
11

g
32

|A|
, t33 =

g
11

g
22

|A|
 where, |A| represents the determinant of A.. 
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