

Algal Biotechnology Products, Processes Matching Science and Economics: A Comprehensive Review

Dr. Rameshi Meena*

Assistant Professor, Department of Botany, Government College, Karauli, Rajasthan, India.

*Corresponding Author: meena.rameshi58@gmail.com

Citation: Meena, R. (2025). Algal Biotechnology Products, Processes Matching Science and Economics: A Comprehensive Review. International Journal of Education, Modern Management, Applied Science & Social Science, 07(04(III)), 31–35.

ABSTRACT

Algal biotechnology, utilizing both microalgae and macroalgae, for producing a wide range of high-value compounds and commodities, from nutraceuticals and pigments to biofuels and biopolymers. Algal biotechnology encompasses the use of microalgae and macroalgae as biological systems presents a sustainable and diverse platform for the production of a broad range of "high-value products and biofuels", leveraging their rapid growth, high biomass productivity, ability to carbon dioxide fixation, and non-reliance on arable land, position them as a promising "next-generation" resource. Despite significant scientific advances, commercialization remains constrained by high production costs, techno-economic bottlenecks, and scalability challenges. This review integrates current state of algal biotechnology focusing on key products and processes with economic analyses. Highlights key products and processes, discusses cultivation and downstream processing technologies, and explores strategies for improving economic viability through integrated biorefinery approaches and critically analyzes the crucial interface between scientific advancements and economic realities. Key recommendations for future research and commercialization pathways are also presented, especially in cultivation, harvesting, and downstream processing that inflate production costs and hinder the competitiveness of low-value, high-volume products like biofuels.

Keywords: Algal Biotechnology, Economic Viability, Biorefinery, Nutraceuticals.

Introduction

The Algal Bioeconomy

The escalating global demands for sustainable energy, food, and materials, coupled with increasing environmental concerns over fossil fuel depletion and climate change, have spurred intensive research into renewable biological systems. Algae, a polyphyletic group of photosynthetic organisms, have emerged as a powerhouse for a potential **algae-based bioeconomy**. Algal biotechnology refers to the application of algal systems primarily microalgae for the production of value-added products, bioenergy, environmental remediation, and industrial applications.

They possess remarkable characteristics that distinguish them from terrestrial crops:

- **High Photosynthetic Efficiency:** Algae's productivity, ability to utilize solar energy and CO₂ to produce a variety of biochemical compounds not readily obtained from terrestrial crops.
- **Rapid Growth and High Productivity:** Their simple structure allows for fast replication, leading to high biomass yield per unit area.
- **Non-Competition with Arable Land:** Cultivation can occur on non-arable land or in saline/wastewater, avoiding competition with food crops.

*Copyright © 2025 by Author's and Licensed by Inspira. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work properly cited.

- **Diverse Biochemical Profile:** They naturally accumulate significant quantities of lipids, carbohydrates, proteins, and specialty metabolites.

Despite these scientific advantages, commercial success has largely been limited to high-value products. The primary challenge lies in the **techno-economic feasibility** of scaling up production and processing, especially for commodity goods. Algae have therefore been positioned as a cornerstone of sustainable bioprocessing and circular bioeconomy strategies. However, bridging laboratory research and commercial deployment remains a core challenge.

Matching the science the biological capacity to produce with the economics the cost of production versus market value is the central theme of successful algal biotechnology.

Major Algal Products and their Commercial Status

Algal products are broadly categorized based on their market value, which directly influences the economic viability of their production pathway.

Major algal products are commercially established in the food, nutraceutical, cosmetics, and agricultural industries, with high-value compounds like agar, carrageenan, astaxanthin, and omega-3 fatty acids being widely produced. Products like biofuels are still largely in the developmental or emerging commercial stages due to cost and production challenges.

Table 1: Major Algal Products and their Commercial Status

High-Value Products (Specialty Chemicals and Nutraceuticals)			
Product Category	Specific Products / Compounds	Algae Source (Common Examples)	Commercial Status
Food and Nutraceuticals	<ul style="list-style-type: none"> Whole biomass (Spirulina, Chlorella), Nori, Kombu, Wakame, Dulse 	<ul style="list-style-type: none"> <i>Spirulina (Arthrospira spp.) and Chlorella spp. (protein-rich 'superfoods' and dietary supplements)</i> <i>Porphyra spp. (Nori)</i> <i>Laminaria spp. (Kombu)</i> <i>Palmaria palmata (Dulse)</i> 	<ul style="list-style-type: none"> Established/Major Market; widely consumed as food and health supplements (tablets, powders, liquids).
Hydrocolloids (Thickeners/ Gelling Agents)	<ul style="list-style-type: none"> Agar, Carrageenan, Alginates 	<ul style="list-style-type: none"> Red macroalgae (<i>Gelidium, Gracilaria, Kappaphycus</i>), Brown macroalgae (<i>Laminaria, Macrocystis</i>) 	<ul style="list-style-type: none"> Established/Major Market; used extensively in food processing (yogurt, ice cream, baby formula), cosmetics, and pharmaceuticals as stabilizers and gelling agents.
Pigments	<ul style="list-style-type: none"> Beta-carotene Astaxanthin Phycocyanin 	<ul style="list-style-type: none"> <i>Dunaliella salina</i> <i>Haematococcuspluvialis</i>, <i>Spirulina spp.</i> 	<ul style="list-style-type: none"> Established/Major Market; used as natural food colorants, feed additives (to enhance fish/egg color), and high-value antioxidants in nutraceuticals.
Polyunsaturated Fatty Acids (PUFAs)	<ul style="list-style-type: none"> Omega-3 (DHA, EPA) 	<ul style="list-style-type: none"> <i>Cryptocodiumcohnii</i> <i>Schizochytrium spp.</i> <i>Nannochloropsis spp.</i> 	<ul style="list-style-type: none"> Established/Major Market; used in infant formulas and health supplements, appealing to vegetarian/vegan markets.
Low-Value, High-Volume Products (Commodities and Bioenergy)			
Agriculture	<ul style="list-style-type: none"> Biofertilizers Biostimulants 	<ul style="list-style-type: none"> Blue-green algae (for nitrogen fixation) 	<ul style="list-style-type: none"> Established/Growing Market; used as

	<ul style="list-style-type: none"> Animal/Aquaculture Feed 	<ul style="list-style-type: none"> various macro- and microalgae 	organic fertilizers, soil conditioners, and nutrient-rich animal/fish feed.
Bioremediation	<ul style="list-style-type: none"> CO₂ sequestration wastewater treatment heavy metal removal 	<ul style="list-style-type: none"> <i>Chlorella</i> spp. <i>Chlamydomonas</i> spp. 	<ul style="list-style-type: none"> Established Niche/Growing; used by industrial operations to treat effluent and capture carbon dioxide emissions.
Cosmetics & Pharmaceuticals	<ul style="list-style-type: none"> Extracts In Creams Lotions Anti-Aging products, Antibiotics Burn dressings 	<ul style="list-style-type: none"> <i>Arthrosira</i> <i>Chlorella</i> <i>Chondrus crispus</i> <i>Laminaria</i> 	<ul style="list-style-type: none"> Established/Growing Market; valued for antioxidant, moisturizing, and anti-inflammatory properties.
Biofuels	<ul style="list-style-type: none"> Biodiesel Bioethanol Biogas Jet Fuel 	<ul style="list-style-type: none"> High oil-content species <i>Botryococcus braunii</i> <i>Nannochloropsis</i> spp. 	<ul style="list-style-type: none"> Emerging/Developmental; commercially viable production is challenged by cost and energy requirements, but research is ongoing.

Key Processes and Technical-Economic Challenges

The production pipeline for algal bioproducts involves several sequential steps, each presenting a cost bottleneck that dictates overall economic feasibility.

- Cultivation Systems**

Table 2: Two main systems are employed, each with trade-offs between cost and control:

System	Description	Advantages	Disadvantages
Open Ponds (Raceway Ponds)	Shallow, circulated ponds exposed to the environment.	Low capital cost, simple operation, large scale feasible.	Low productivity, high water loss (evaporation), contamination risk, limited environmental control.
Photobioreactors (PBRs)	Closed, transparent systems (e.g., tubes, flat panels)	High productivity, low contamination, precise control of light/temp/CO ₂ .	High capital cost, complex sterilization and operation, high energy demand (pumping).

- Economic Challenge:** The high capital and operating costs of PBRs are typically only justified for high-value products, while the lower productivity of open ponds makes them marginal for low-value commodities [Source 4.4].

- Harvesting and Dewatering**

Algal cells, especially microalgae, are small (\$2-20 μm) and exist in dilute suspensions, making harvesting and dewatering a major cost driver, potentially accounting for 20-30% of total production cost [Source 1.2].

- Methods:** Flocculation (chemical or auto flocculation), flotation, sedimentation, and membrane filtration.
- Economic Challenge:** Energy-intensive methods like centrifugation are often too costly for biofuel production. Research focuses on low-cost, scalable techniques like auto flocculation or electro-flocculation.

- **Downstream Processing and Extraction**

This involves cell disruption and extraction of target compounds, which varies drastically depending on the product (e.g., solvent extraction for lipids, simple drying/milling for whole biomass).

- **Economic Challenge:** Cell wall disruption (e.g., bead milling, ultrasonic lysis) is highly energy-intensive and can significantly increase production costs. For biofuels, a balance must be struck between efficient extraction and manageable energy input [Source 4.2].

The Economic Solution: The Biorefinery Concept

The key conclusion from numerous techno-economic analyses (TEA) is that the "fuel-only" pathway is unlikely to be economically viable at current fossil fuel prices [Source 4.3, 4.4].

The industry's shift is toward the **Algal Biorefinery** concept, which seeks to maximize the value extracted from every component of the algal biomass. Scaling microalgal biorefinery to commercial sector to meet the global requirement of biofuel requires rapid industrialization. However, it is very necessary to work on the cost of production and the production yield. Therefore, identifying the factors affecting biomass, bio-product, and biofuel production are critical in algal biorefinery (Thanigaivelet *et al.*, 2022). Among microalgae *Phaeodactylum tricornutum*, *Schizochytrium* sp., *Chlorella* sp., *Nannochloropsis* sp. show lipid productivity of 54.80, 44.80, 30–40, 42.1 mgL⁻¹ day⁻¹ respectively (Udayan *et al.*, 2022).

- **Co-product Strategy:** By extracting high-value compounds (e.g., astaxanthin, protein, (PUFA) first, the revenue generated can significantly offset the cost of producing the remaining low-value fraction (e.g., fuel precursor, fertilizer).
- One TEA study demonstrated that transitioning from a fuel-only approach to a co-product suite could reduce the Minimum Fuel Selling Price (MFSP) from over (gallon) of gasoline equivalent (GGE) to (GGE) [Source 4.3].
- **Integrated Systems:** Coupling algal cultivation with wastewater treatment or (CO) capture from industrial sources provides "negative-cost" inputs (nutrients, carbon) and provides environmental services that can generate carbon/environmental credits, further improving the economics [Source 1.1, 4.2].

The **algal biorefinery concept** is an integrated, sustainable approach that processes algal biomass into a spectrum of profitable bio-based products and bioenergy, similar to how a petroleum refinery processes crude oil. This model is considered a key economic solution to the challenges of high production costs associated with single-product systems, particularly for biofuels, by ensuring nearly zero waste and maximizing resource utilization within a circular economy framework.

Core Concept

The primary economic challenge of solely producing algal biofuels (e.g., biodiesel, bioethanol, biogas) is that it is often not commercially viable on a large scale due to high capital and operational costs (e.g., cultivation, harvesting, extraction). The biorefinery approach addresses this by:

- **Producing Multiple Products:** Extracting high-value, low-volume products (pharmaceuticals, nutraceuticals, pigments, cosmetics) alongside lower-value, high-volume products (biofuels, animal feed, biofertilizers). The high market value of the former helps offset the overall production costs.
- **Integrating Processes:** Linking various conversion technologies (biochemical,
- **Integrating Processes:** Linking various conversion technologies (biochemical, thermochemical) into a single, efficient facility that uses byproducts from one process as feedstock for another (e.g., using de-oiled biomass for biogas production, or using the resulting digestate as a nutrient source for new algae cultivation).
- **Environmental Benefits:** Utilizing waste streams like municipal or industrial wastewater as a nutrient source and capturing industrial CO₂ emissions for algal growth, which reduces operational costs and provides valuable environmental services (bioremediation and carbon sequestration).

Scientific Advancements for Economic Viability

Scientific advancements are significantly enhancing the economic viability of algae through **integrated biorefinery systems, genetic engineering, and process optimization**. These

innovations aim to reduce production costs and diversify revenue streams by producing a range of high-value co-products alongside biofuels.

- **Genetic and Metabolic Engineering:** CRISPR-Cas9 and other synthetic biology tools are being used to:
 - Enhance target product yield (e.g., increasing lipid content without significantly reducing overall biomass productivity) [Source 2.3].
 - Improve stress tolerance for robust outdoor cultivation.
 - Facilitate easier harvesting (e.g., engineering cells for spontaneous flocculation) [Source 3.4].
- **Strain Selection and Optimization:** Identifying robust, high-yielding strains adapted to local environmental conditions (temperature, light, water source) is crucial for both open ponds and PBRs [Source 4.2].
- **Process Intensification:** Developing hybrid cultivation systems that combine the low cost of open ponds with the high productivity of PBRs for a specific phase of growth (e.g., two-stage systems for pigment accumulation) is a major focus.

Conclusion and Future Outlook

Algal biotechnology has successfully commercialized a range of high-value specialty products, proving its technological capability. However, the economic promise of algae as a source of commodity products, particularly biofuels, remains contingent on fundamental improvements in process efficiency and cost reduction. The scientific community has identified and is actively working on the key bottlenecks: low productivity at scale, high harvesting energy, and costly downstream processing.

The **algal biorefinery concept**, leveraging a portfolio of co-products and utilizing integrated systems with waste streams, provides the most rational economic path forward. Future success depends on interdisciplinary research that continues to apply cutting-edge biological engineering to increase biological efficiency while simultaneously developing robust, low-energy, and scalable engineering solutions for cultivation and separation.

References

1. Borowitzka, M.A. (1992). Algal biotechnology products and processes matching science and economics. *Journal of Applied Phycology*, **4**(3), 267–279. (Source 1.2)
2. Borowitzka, M.A. (2018). *Algae Biotechnology: Products and Processes*. Springer. (Source 1.1)
3. Williams, P. J. and Laurens L. M. L. (2010). Microalgae as biodiesel & biomass feedstocks: Review & analysis of the biochemistry, energetics & economics. *Energy & Environmental Science*, **3**(5), 554-590. (Source 1.3 excerpt)
4. Laurens L.M.L. et al. (2022). Enabling Production of Algal Biofuels by Techno-Economic Optimization of Co-Product Suites. *Frontiers in Chemical Engineering*, **4**, 803513. (Source 4.3)
5. Cruce, J. L. and Quinn J. C. (2019). Economic viability of multiple algal biorefining pathways and the impact of public policies. *Algal Research*, **40**, 101488. (Source 4.4)
6. Salloum, F. et al. (2024). Algal Biofuels: A Comprehensive Review and Analysis. *Journal of Applied Phycology*, **36**, 4321–4338. (Source 2.4) Biofuels Bioproducts* (2022). ([SpringerLink][8])
7. Gamal, R., Shreadah, M.A. *Marine microalgae and industrial applications: A review*. J Genet Eng Biotechnol (2024). ([PMC][2])
8. Insights into microalgal biotechnology ... *J Environ Manage* (2025). ([ScienceDirect][7])
9. Advancements in Microalgal Biorefinery Technologies ... *Fermentation* (2025). ([MDPI][1])
10. Strategies ... enhance commercial viability ... *BioresourTechnol* (2023). ([ScienceDirect][10])
11. Special Issue: Algal Products and Processes ... *Energies*. ([MDPI][9])
12. Value-added Products from Algae ... Springer (2024). ([SpringerLink][11]).