

Impact of AI on the Quality of Academic Excellence

Dr. Pragya Priyadarshini Harsha*

Associate Professor, DMS, JIET, Jodhpur.

*Corresponding Author: pragya.harsha@jietjodhpur.ac.in

Citation: Harsha, P. (2025). Impact of AI on the Quality of Academic Excellence. International Journal of Innovations & Research Analysis, 05(04(I)), 229–235. [https://doi.org/10.62823/IJIRA/05.04\(I\).8394](https://doi.org/10.62823/IJIRA/05.04(I).8394)

ABSTRACT

The rapid integration of generative artificial intelligence (AI) tools into higher education has prompted urgent reflection on what constitutes academic excellence. This provocation essay challenges the conventional notion that excellence is defined solely by outputs such as grades, publication counts, or linguistic proficiency. Drawing on a wide range of recent studies, it explores how AI can both enhance and erode the quality of academic achievement. On the one hand, AI offers transformative support for writing, personalized learning, and cognitive efficiency. On the other hand, it raises concerns about authorship, critical thinking, academic integrity, and equitable access. By reviewing evidence from diverse educational contexts, the paper argues that the impact of AI depends not on the technology itself, but on how academic institutions redefine excellence in light of it. A conceptual framework is proposed to illustrate how AI's influence is mediated by student motivation, AI literacy, and institutional ethics. The essay concludes that academic excellence in the AI era must prioritize critical engagement, ethical use, and higher-order thinking, rather than traditional performance metrics.

Keywords: Academic Excellence, Artificial Intelligence (AI), Academic Writing, Cognitive Efficiency.

Introduction

Academic excellence has traditionally been measured by grades, publications and rigid output-based metrics. Yet scholars warn that such quantitative metrics "do not offer a whole picture" of student capability (Sugandhi et al., 2024). In practice, excellence also depends on critical thinking, creativity, motivation and integrity, factors often ignored by narrow evaluations. Meanwhile, generative AI is rapidly entering education, offering personalization and new insights (Pouratashi, 2025) but also raising "formidable challenges" to academic honesty and authorship. Existing debates are therefore fragmented: some emphasize AI's benefits, others its threats, but few integrate both. We thus pose two questions: (i) What does academic excellence truly mean? and (ii) How can AI either enhance or undermine it? In pursuing these, we advance a provocative claim: "If academic excellence remains tied only to grades, outputs, or rigid standards, AI may expose its weaknesses more than its strengths." In other words, AI will prompt educators to redefine excellence as a more comprehensive and holistic goal, one that extends beyond traditional metrics.

What Does Academic Excellence Mean?

Academic excellence is a multi-dimensional construct. It encompasses student achievement and skills (e.g., high grades, graduation qualifications, and employability), as well as deeper capacities. Academic excellence demands a climate where students and teachers are scrupulously honest, both about what they believe and about what they cannot believe (Sugandhi et al., 2024). Five significant facets of academic excellence include academic infrastructure, fairness, fraternity, industry interaction,

*Copyright © 2025 by Author's and Licensed by Inspira. This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work properly cited.

and autonomy (Brunkhorst, 2002; Shukla & Singh, 2015). Experts have observed that a core academic task is to produce and disseminate high-quality knowledge, and that scholarly excellence and originality depend on values such as academic freedom (Nir & Zilberstein-Levy, 2006). Other aspects commonly cited include:

- **Curriculum relevance:** Up-to-date, market-responsive courses and pedagogy (Oleksiyenko & Ros, 2019). An effective curriculum equips students with needed competencies and aligns learning outcomes with real-world demands.
- **Faculty expertise:** Qualified, experienced teachers who engage students. Lecturers in one study linked excellence to faculty with advanced degrees and years of teaching experience, who can "vary teaching techniques to benefit students" (Obura & Emoit, 2024).
- **Student skills and dispositions:** Abilities like critical thinking, problem-solving, research and writing skills, along with motivation and self-regulation. Educational theorists emphasize that genuine excellence requires students who can analyze, synthesize and communicate ideas effectively (Fathi & Rahimi, 2024; Oubibi et al., 2025).
- **Integrity and creativity:** Honest scholarship, ethical behavior and original inquiry. As Nir and Zilberstein-Levy note, academic freedom is crucial for fostering excellence and originality in research (Nir & Zilberstein-Levy, 2006; Prachnakorn et al., 2024).
- **Holistic outcomes:** Beyond academics, excellence can include community engagement and soft skills. For instance, some educators include extracurricular and service learning (clubs, community projects) as part of an institution's excellence profile (Oleksiyenko & Ros, 2019) because such activities build leadership and social responsibility.

In sum, academic excellence is not a single metric but a constellation of outcomes and behaviors; high achievement plus critical thinking, creativity, ethical conduct, and real-world impact. Narrow definitions (e.g. test scores alone) are widely considered inadequate (Capogrossi, 2002).

How AI Can Ameliorate Academic Excellence

AI has a lot of potential to improve productivity and learning. For instance, AI-powered tutors and adaptive platforms in personalized learning can automatically adapt to the needs and pace of each individual student. According to Pouratashi (2025), AI can "foster personalized learning, automate administrative tasks, reduce workloads, offer instant feedback, tailor courses to individual progress, and enhance student engagement." ChatGPT and adaptive textbooks are examples of generative AI tools that offer "adaptive lesson plans, multilingual content, and real-time feedback" (Allison, 2025), making education accessible to a wide range of learners. By allowing students to learn in ways that play to their strengths, these technologies can improve self-efficacy and engagement (Zhang & Li, 2025).

AI has the potential to be a very effective productivity tool for academic writing and research. AI supports writing in six domains: idea generation, content structuring, literature synthesis, data management, editing, and communication/ethical compliance, according to Khalifa and Albadawy's (2024) systematic review of 24 studies. Students who use AI in practice report that it speeds up the drafting and revision process. Asking an AI to rewrite a paragraph or recommend essay topics, for example, can spark original thought. Additionally, AI systems assist with data analysis and literature review (e.g., organizing citations or summarizing articles), which enhances the effectiveness and caliber of research (Khalifa & Albadawy, 2024; Pouratashi, 2025). To put it briefly, when used properly, AI tools can elevate students' work by acting as knowledgeable research assistants.

Additionally, AI promotes inclusivity and accessibility. AI-enhanced technologies have the potential to be revolutionary for students with disabilities. Learners with hearing, vision, or mobility issues can fully participate thanks to speech-to-text, automated captions, and intelligent assistants (Shen & Chen, 2025). Additionally, remote or otherwise marginalized students can collaborate more readily thanks to AI-driven discussion boards and virtual classrooms (Wang et al., 2024). According to preliminary data, neurodivergent learners benefit from AI-facilitated learning. By meeting students where they are, AI can help extend excellence to all students in these ways (Wise & Montalvo, 2018).

In the end, AI is useful for teaching meta-skills. Learning can be deepened by using AI in the classroom. Refining questions for ChatGPT transforms the use of AI into a lesson in accuracy and critical evaluation; teaching students inspires engineering (Oubibi et al., 2025). Iteratively refining an AI prompt compels students to make sense of the assignment's requirements, which encourages higher-order

thinking, according to one educational guide (Dolbin et al., 2024). As a result, assessments that incorporate AI can serve as a model for digital literacy, teaching students how to assess and collaborate with AI instead of just using it.

Overall, when embedded thoughtfully, AI has the potential to amplify academic excellence: it can personalize learning, enrich pedagogy, boost research skills, and increase equity in education (Dolbin et al., 2024; Khalifa & Albadawy, 2024; Pouratashi, 2025). The challenge is to harness these affordances without diminishing core educational goals.

How AI Can Aggravate Academic Excellence

AI also presents significant risks that, if unchecked, could compromise excellence. Academic dishonesty is a major issue (Garcia, 2025). Essays, code, and problem solutions that are difficult to tell apart from student work can be produced by generative AI. Because AI can produce original text that avoids detection, traditional plagiarism tools may not be able to detect AI-generated cheating (Bittle & El-Gayar, 2025). Thus, ghostwritten assignments pose a threat to the "fundamental tenets of academic honesty" (Bittle & El-Gayar, 2025). In essence, AI corrupts the validity of grades by making it simpler to achieve high scores without actually learning (Huerta et al., 2016).

Cognitive dependence is another harm. According to several studies, relying too much on AI dialogue systems—such as sophisticated chatbots—can weaken analytical and critical thinking abilities (Hussain & Ahmad, 2023). According to Zhai et al. (2024), students who blindly accept answers produced by AI typically exhibit "impaired critical cognitive skills such as critical thinking, decision-making, and analytical thinking." Others show that continuous use of AI can result in information misinterpretation and even research misconduct. According to one study, students may "culminate in research misconduct, including plagiarism, fabrication, and falsification" if they take AI outputs at face value (Hysaj et al., 2025). Practically speaking, if students rely too much on AI, they might stop solving problems on their own, which would result in a loss of in-depth comprehension.

Relatedly, motivation and effort may suffer as a result. Instructors have observed that when answers become too easy to generate, students' drive can wane. Research indicates that regular use of AI assistants is linked to a decline in information retention and an increased tendency to rely on the tool for answers. the over-reliance on AI dialogue systems might diminish students' drive and commitment to learning, as they might lean too heavily on these systems for answers instead of actively participating (Aladsani, 2025; Zhai et al., 2024). In essence, AI shortcuts can crowd out the struggle that often underpins true learning.

AI also risks exacerbating inequalities. Access to AI tools is uneven: wealthier institutions and students often have the latest devices and connectivity, while others do not (Jwair, 2025). In such cases, AI can widen the gap. Generative AI "risks becoming a force that widens, rather than narrows, educational inequalities" (Allison, 2025), because under-resourced schools may see AI as a quick fix for systemic deficits. Furthermore, AI models often encode cultural and linguistic biases, so students from marginalized backgrounds may find AI-generated content less relevant or even misleading (Masters, 2025). Without careful design, AI could thus reinforce existing disparities in academic opportunities.

Finally, assessment gaps loom large. If educators cling to old exam formats, many students will simply use AI to produce high scores. This threatens to render traditional assessments meaningless (Kim et al., 2025). Analysts recommend that, without redesign, e.g. focusing on higher-order tasks and multimodal projects, AI use will simply turn assessments into exercises in deception. One article suggests requiring video presentations or staged writing processes to combat misuse (Dolbin et al., 2024). In summary, AI can aggravate issues of plagiarism, skill erosion, inequity and misaligned evaluation if we fail to adapt our definitions of excellence to these new conditions (Bittle & El-Gayar, 2025).

The Core Provocative Argument

The evidence reveals a fundamental tension: AI has the power to both enrich and expose our conception of excellence (Amini et al., 2025). If we maintain a narrow definition (grades, outputs), AI will likely reveal the hollowness of that view; high marks achieved through shortcuts or biased tools do not equate to genuine excellence. Conversely, if we define excellence more broadly, emphasizing critical thought, creativity, collaboration and ethical scholarship, then AI can serve as a catalyst for reaching that ideal. In other words, AI forces us to reassess what we value. As one review concludes, AI is "revolutionising academic writing and research" but also demands "ethical and transparent use (Nikolic et al., 2024). Thus, the central argument is that AI itself is neutral; it is our definition of excellence that must

change. We must shift the goalposts of excellence from rigid outputs toward a holistic set of skills and values; only then can AI's benefits outweigh its pitfalls (Mwilongo & Mwita, 2025).

Proposed Conceptual Model

To clarify these dynamics, we propose a dual-pathway model of AI's impact on learning. In the **"Enabling Path"**, AI tools are used to support deeper learning behaviors, leading to higher-quality achievement. For example:

AI tools (adaptive tutors, writing assistants) → Positive learning behaviors (personalized engagement, autonomy, creativity, self-regulation) → Enhanced excellence (improved skills, critical thinking, innovation).

In contrast, the **"Undermining Path"** illustrates misuse of AI leading to poorer outcomes: AI tools (as crutches for answers) → Negative learning behaviors (over-reliance, shortcut-taking, lowered effort, dishonesty) → Eroded excellence (superficial work, diminished skills, integrity breaches).

This framework highlights that the same technology can yield opposite effects depending on how it is integrated. AI's impact flows through intermediate student behaviors: when AI use is guided and reflective, it amplifies genuine excellence; when use is unguided or exploitative, it reveals the frailties of traditional achievement measures.

Implications

This analysis suggests concrete shifts for educators, institutions and learners:

- **For Educators:** Adopt AI-aware pedagogy. Teach students AI literacy and critical evaluation of AI outputs (e.g. exercises in prompt engineering). Integrate AI into authentic assessments that value process over product, such as project-based tasks or portfolios. Use Scaffold AI step-by-step (e.g., outline first, then draft, then revise with AI) to maintain student ownership of their work. Emphasize reflection: require students to justify or critique AI-generated answers to keep higher-order thinking front and center (Dolbin et al., 2024). In sum, leverage AI as a tool for learning rather than a shortcut, using it to cultivate digital literacy and creativity (Dolbin et al., 2024).
- **For Institutions:** Ensure equitable access and support. Invest in infrastructure and training so all students can benefit from AI tools. Provide faculty development to enable instructors to confidently use and monitor AI in their teaching. Update academic integrity policies to address AI specifically, while also rethinking grading schemes: move toward assessing higher-level skills (analysis, synthesis, collaboration) that AI cannot easily mimic. Foster a campus culture that values the ethical use of AI and intellectual growth over scoreboard mentality. As one observer urges, without proactive measures, "the digital divide risks becoming a chasm" in the AI era (Allison, 2025).
- **For Students:** Cultivate responsible AI practices. Learn to use AI as a collaborator, not a cheat: for example, draft your work yourself first and use AI for feedback or ideas. Develop skills in evaluating sources and verifying information from AI. Focus on building your own abilities (critical thinking, writing, problem-solving), since these remain the true marks of excellence. Engage in co-creative tasks: an AI-assisted assignment can teach you about your own thinking process (e.g. by refining prompts). Finally, adhere to community standards: always acknowledge AI contributions and prioritize honesty. By doing so, students help redefine excellence as a blend of technological savvy and personal integrity.

These implications underline that policies and expectations must evolve. Educators should shift from policing cheating to designing learning experiences that make cheating less appealing and less feasible. Institutions should treat AI tools as part of the curriculum, not as adversaries – for instance, offering optional AI literacy courses. Crucially, everyone must adopt a future-oriented approach: as AI technologies evolve, so must our definitions of learning success.

In conclusion, artificial intelligence is neither a panacea nor an automatic catastrophe for academic quality – the real danger lies in inertia. If we stubbornly cling to old definitions of excellence (high GPA, rote outputs, narrow skill checks), AI will rapidly expose the limitations of those metrics. Conversely, if we proactively expand excellence to include deep learning, creativity, and ethical scholarship, AI can be a powerful ally. Our provocation holds: AI may reveal the weaknesses of outdated excellence models more than it magnifies their strengths. The task for educators and scholars is clear:

reconceive academic excellence for the 21st century. Only then can we harness AI to truly elevate education, rather than undermine it.

The analysis above draws on recent educational research and policy literature (e.g., Albadawy, 2024; Allison, 2025; Bittle & El-Gayar, 2025; Khalifa & Zhai et al., 2024; Nir & Zilberstein-Levy, 2007; Oleksiyenko & Ros, 2019; Pouratashi, 2025; Sugandhi et al., 2024). These sources document both the transformative potential of AI (personalized learning, writing support, accessibility) and its risks (plagiarism, cognitive decline, inequity), supporting the arguments above.

Conclusion

In conclusion, artificial intelligence is neither a panacea nor an automatic catastrophe for academic quality, the real danger lies in inertia. If we stubbornly cling to old definitions of excellence (high GPA, rote outputs, narrow skill checks), AI will rapidly expose the limitations of those metrics. Conversely, if we proactively expand excellence to include deep learning, creativity, and ethical scholarship, AI can be a powerful ally. Our provocation holds: AI may reveal the weaknesses of outdated excellence models more than it magnifies their strengths. The task for educators and scholars is clear: reconceive academic excellence for the 21st century. Only then can we harness AI to truly elevate education, rather than undermine it.

References

1. Aladsani, H. K. (2025). Developing postgraduate students' competencies in generative artificial intelligence for ethical integration into academic practices: a participatory action research. *Interactive Learning Environments*, 33(10), 5747–5765. <https://doi.org/10.1080/10494820.2025.2487517>
2. Allison, J. (2025, May 30). *Digital equity in the age of generative AI: Bridging the divide in educational technology*. www.bera.ac.uk. Retrieved December 12, 2025, from <https://www.bera.ac.uk/blog/digital-equity-in-the-age-of-generative-ai-bridging-the-divide-in-educational-technology>
3. Amini, M., Lee, K., Yiqiu, W., & Ravindran, L. (2025). Proposing a framework for ethical use of AI in academic writing based on a conceptual review: implications for quality education. *Interactive Learning Environments*, 1–25. <https://doi.org/10.1080/10494820.2025.2523382>
4. Bittle, K., & El-Gayar, O. (2025). Generative AI and Academic Integrity in Higher Education: A Systematic review and research agenda. *Information*, 16(4), 296. <https://doi.org/10.3390/info16040296>
5. Boyer, E. L. (1964). Academic excellence. *Improving College and University Teaching*, 12(3), 164. <https://doi.org/10.1080/00193089.1964.10532326>
6. Brunkhorst, B. J. (2002). A working model for evaluating academic excellence in geoscience education, undergraduate, and K-12. *Journal of Geoscience Education*, 50(1), 72–77. <https://doi.org/10.5408/1089-9995-50.1.72>
7. Capogrossi, D. (2002). The Assurance of Academic Excellence among Non-traditional Universities. *Higher Education in Europe*, 27(4), 481–490. <https://doi.org/10.1080/0379772022000071968>
8. Dolbin, R., Liu, Y., Slabbinck, R., & L. Stewart Jr, R. (2024, November). *AI-Powered Education: Authentic Assessments and Learning*. www.asccc.org. Retrieved December 12, 2025, from <https://www.asccc.org/content/ai-powered-education-authentic-assessments-and-learning#:~:text=>
9. Fathi, J., & Rahimi, M. (2024). Utilising artificial intelligence-enhanced writing mediation to develop academic writing skills in EFL learners: a qualitative study. *Computer Assisted Language Learning*, 1–40. <https://doi.org/10.1080/09588221.2024.2374772>
10. Garcia, M. B. (2025). ChatGPT as an Academic Writing tool: Factors influencing researchers' intention to write manuscripts using Generative Artificial intelligence. *International Journal of Human-Computer Interaction*, 41(24), 15514–15528. <https://doi.org/10.1080/10447318.2025.2499158>

11. Huerta, M., Goodson, P., Beigi, M., & Chlup, D. (2016). Graduate students as academic writers: writing anxiety, self-efficacy and emotional intelligence. *Higher Education Research & Development*, 36(4), 716–729. <https://doi.org/10.1080/07294360.2016.1238881>
12. Hussain, A., & Ahmad, S. (2023). Mapping the Literature on Artificial intelligence in Academic Libraries: A Bibliometrics Approach. *Science & Technology Libraries*, 43(2), 131–146. <https://doi.org/10.1080/0194262x.2023.2238198>
13. Hysaj, A., Dean, B. A., & Freeman, M. (2025). Exploring the purposes and uses of generative artificial intelligence tools in academic writing for multicultural students. *Higher Education Research & Development*, 44(7), 1686–1700. <https://doi.org/10.1080/07294360.2025.2488862>
14. Jwair, A. a. B. (2025). Generative artificial intelligence in higher education: Students' journey through opportunities, challenges, and the horizons of academic transformation. *Cogent Education*, 12(1). <https://doi.org/10.1080/2331186x.2025.2589495>
15. Khalifa, M., & Albadawy, M. (2024). Using artificial intelligence in academic writing and research: An essential productivity tool. *Computer Methods and Programs in Biomedicine Update*, 5.
16. Kim, J., Yu, S., Lee, S., & Detrick, R. (2025). Students' prompt patterns and its effects in AI-assisted academic writing: Focusing on students' level of AI literacy. *Journal of Research on Technology in Education*, 1–18. <https://doi.org/10.1080/15391523.2025.2456043>
17. Masters, K. (2025). Artificial intelligence and the death of the academic author. *Medical Teacher*, 47(10), 1563–1565. <https://doi.org/10.1080/0142159x.2025.2523463>
18. Mwilongo, N. H., & Mwita, K. M. (2025). The role of artificial intelligence on the academic performance of university students: The mediating role of intrinsic motivation to learn. *Innovations in Education and Teaching International*, 62(5), 1467–1483. <https://doi.org/10.1080/14703297.2025.2534440>
19. Nehra, S. S., & Bansode, S. Y. (2024). Exploring the prospects and perils of integrating Artificial intelligence and ChatGPT in Academic and Research Libraries (ARL): Challenges and opportunity. *Journal of Web Librarianship*, 18(3), 111–132. <https://doi.org/10.1080/19322909.2024.2390413>
20. Nikolic, S., Sandison, C., Haque, R., Daniel, S., Grundy, S., Belkina, M., Lyden, S., Hassan, G. M., & Neal, P. (2024). ChatGPT, Copilot, Gemini, SciSpace and Wolfram versus higher education assessments: an updated multi-institutional study of the academic integrity impacts of Generative Artificial Intelligence (GenAI) on assessment, teaching and learning in engineering. *Australasian Journal of Engineering Education*, 29(2), 126–153. <https://doi.org/10.1080/22054952.2024.2372154>
21. Nir, A. E., & Zilberstein-Levy, R. (2006). Planning for academic excellence: tenure and professional considerations. *Studies in Higher Education*, 31(5), 537–554. <https://doi.org/10.1080/03075070600922725>
22. Obura, E. A., & Emoit, P. I. (2024). Artificial intelligence in academic writing and research skills in Kenyan Universities: Opportunities and challenges. *Africa Education Review*, 20(6), 58–80. <https://doi.org/10.1080/18146627.2024.2440351>
23. Oleksiyenko, A., & Ros, V. (2019). Cambodian lecturers' pursuit of academic excellence: expectations vs. reality. *Asia Pacific Journal of Education*, 39(2), 222–236. <https://doi.org/10.1080/02188791.2019.1621797>
24. Oubibi, M., Hryshayeva, K., & Huang, R. (2025). Enhancing postgraduate digital academic writing proficiency: the interplay of artificial intelligence tools and ChatGPT. *Interactive Learning Environments*, 33(6), 3940–3958. <https://doi.org/10.1080/10494820.2025.2454445>
25. Pouratashi, M. (2025). University students' use of artificial intelligence for academic research: Levels and predictors (case: Iranian agricultural students). *Innovations in Education and Teaching International*, 1–14. <https://doi.org/10.1080/14703297.2025.2596255>
26. Prachnakorn, N., Preecha, K., Sri-U-Thai, T., Jaroenyon, T., Sawang, K., Patwong, N., & Wattanapisit, A. (2024). Incorporating artificial intelligence into a workshop on scientific and scholarly report writing for preclinical medical students. *Medical Teacher*, 46(6), 746–748. <https://doi.org/10.1080/0142159x.2024.2311267>

27. Shen, Y., & Chen, L. (2025). 'Critical chatting' or 'casual cheating': how graduate EFL students utilize ChatGPT for academic writing. *Computer Assisted Language Learning*, 1–29. <https://doi.org/10.1080/09588221.2025.2479141>
28. Shukla, A., & Singh, S. (2015). Facets of academic excellence in management education: conceptualization and instrument development in India. *Studies in Higher Education*, 41(11), 1883–1899. <https://doi.org/10.1080/03075079.2014.999316>
29. Sugandhi, R., Venkatesh Awala, K., & Kumar, T. (2024). AI-Driven Academic Excellence by Building an Advanced Student Performance Analysis System. *International Journal of Innovative Research in Technology*, 10(12), 1723–1730.
30. Wang, J., Liao, Y., Liu, S., Zhang, D., Wang, N., Shu, J., & Wang, R. (2024). The impact of using ChatGPT on academic writing among medical undergraduates. *Annals of Medicine*, 56(1), 2426760. <https://doi.org/10.1080/07853890.2024.2426760>
31. Wise, G., & Montalvo, I. C. (2018). How to build a regional university: a case study that addresses policy settings, academic excellence, innovation system impact and regional relevance. *Journal of Higher Education Policy and Management*, 40(4), 342–358. <https://doi.org/10.1080/1360080x.2018.1482104>
32. Zhai, C., Wibowo, S., & Li, L. D. (2024). The effects of over-reliance on AI dialogue systems on students' cognitive abilities: a systematic review. *Smart Learning Environments*, 11(1). <https://doi.org/10.1186/s40561-024-00316-7>
33. Zhang, B., & Li, W. (2025). The influence of generative artificial intelligence support on learning anxiety and academic expectation stress: the mediating role of self-efficacy. *Interactive Learning Environments*, 1–17. <https://doi.org/10.1080/10494820.2025.2570493>.

